

Enclosure to: NSAD-L-2010-157
Task JHS01

NSAD-R-2010-047

LIVE-VIRTUAL-CONSTRUCTIVE

ARCHITECTURE ROADMAP
IMPLEMENTATION

CONVERGENCE FINAL REPORT

JUNE 2010

.

NSAD-R-2010-047

Live-Virtual-Constructive

Architecture Roadmap Implementation

Convergence Final Report

June 2010

Prepared by:

R. Saunders, Johns Hopkins University Applied Physics Laboratory
D. L. Drake, Johns Hopkins University Applied Physics Laboratory

P. Gustavson, SimVentions
J. G. Kovalchik, Johns Hopkins University Applied Physics Laboratory

W. Milks, Lockheed Martin
R. Murray, Boeing
E. Powell, SAIC

S. D. Vick, Johns Hopkins University Applied Physics Laboratory

This page intentionally left blank.

Live-Virtual-Constructive Architecture Roadmap Implementation,
Convergence Final Report

Page iii

TABLE OF CONTENTS

EXECUTIVE SUMMARY .. 1

1. REPORT DEVELOPMENT PROCESS .. 2

1.1 Report Format .. 3
1.2 Convergence Approach .. 3

2. CONVERGED EXECUTION .. 6

2.1 Overview of the Design Concept ... 6
2.2 Multi-architecture Infrastructure Life Cycle .. 8
2.3 Persistent Entity Operations ... 9
2.4 Messaging Operations .. 11

3. CONVERGENCE ACTIVITIES .. 13

3.1 Convergence Systems Engineering .. 13
3.1.1 CSE Requirements and Risk Analysis ... 13
3.1.2 CSE Enterprise Metadata Communication .. 13
3.1.3 CSE Prototype Evaluation ... 13

3.2 Common Training Instrumentation Architecture (CTIA) .. 13
3.2.1 CTIA Execution Interfaces .. 14
3.2.2 CTIA Interactions .. 15
3.2.3 CTIA Transfer of Ownership ... 15

3.3 Distributed Interactive Simulation (DIS) ... 15
3.3.1 DIS to CSI Gateway... 16
3.3.2 DIS Gateway Requirements ... 16

3.4 High Level Architecture (HLA) ... 16
3.4.1 HLA Convergence Assessment ... 17
3.4.2 HLA RTI Implementation.. 17
3.4.2 HLA Multi-Architecture Testing ... 18

3.5 Test and Training Enabling Architecture (TENA) .. 18
3.5.1 TENA Enterprise Metadata .. 18
3.5.2 TENA Additional Features .. 19
3.5.3 TENA Ownership Transfer .. 19

4. COURSES OF ACTION .. 20

4.1 Course of Action Development ... 20
4.2 Return on Investment Analysis .. 22

5. SUMMARY .. 24

APPENDIX A: REFERENCES .. A-1

APPENDIX B: ABBREVIATIONS AND ACRONYMS ... B-1

Live-Virtual-Constructive Architecture Roadmap Implementation,
Convergence Final Report

Page iv

LIST OF FIGURES

Figure 1. LVC Simulations Interact with Real Command and Control to Provide a Rich
Environment for Engineering, Training, and Testing ... 2

Figure 2. Legacy Architecture Data Model Overlap .. 4

Figure 3. Common Distributed Architecture Overview ... 5

Figure 4. Conceptual Migration from Before Converged Execution to After 7

Figure 5. Layered Communication Diagram for the Converged Execution 7

Figure 6. The Multi-Architecture Infrastructure Life Cycle ... 9

Figure 7. Life Cycle of Object Types and Objects ... 10

Figure 8. Sequence Diagram for Multi-architecture Object Deletion ... 11

Figure 9. Life Cycle of Message Types and Messages ... 12

Figure 10. Sequence Diagram for Multi-architecture Message Passing 12

Figure 11. CTIA Convergence Focused on Central Range Operations Center 14

Figure 12. In Addition to Middleware, the TENA Architecture Includes Servant and Proxy
Objects Generated Automatically by TENA Tools ... 18

Figure 13. Courses of Action Partition the Convergence Activities into Incremental Stages. 21

Figure 14. Investments and Return for COA2 .. 23

LIST OF TABLES

Table 1. Execution Schedule for COA2 ... 22

Live-Virtual-Constructive Architecture Roadmap Implementation,
Convergence Final Report

Executive Summary

Page 1

EXECUTIVE SUMMARY

The Live-Virtual-Constructive Architecture Roadmap (LVCAR) Study developed a
vision for achieving significant interoperability improvements in live, virtual, and constructive
(LVC) simulation environments. The study recommended activities proposed to lower the time
and cost required to integrate multi-architecture events by building better bridges between the
legacy architectures and making them more compatible with each other. An LVCAR
Convergence Team (LVCAR-CT) has explored converging the current architectures. The
recommended approach evolves each architecture to meet the needs of users while favoring
common implementation techniques and solutions. Rather than make the current High Level
Architecture (HLA) like the current Test and Training Enabling Architecture (TENA), the goal is
to make future HLAs more like future TENAs. Subject matter experts (SMEs) from each
architecture participated together on the LVCAR-CT. Each SME provided existing
documentation resources and identified where in the documents to extract the key services and
tools. The LVCAR-CT met to discuss these artifacts and agreed on a framework of common
constructs through which to view them.

The LVCAR-CT has established an independent view of the current architectures. The
next step was to determine what actions lead to convergence. The vision is that in 2015, new
versions of the Common Training Instrumentation Architecture, Distributed Interactive
Simulation, HLA, and TENA will come out that incorporate the results of the Convergence
Initiative. The LVCAR-CT work does not stand alone. In particular, many preconditions, which
are being pursued as part of related tasks, are necessary to achieve this vision.

This report describes the converged architecture envisioned by the LVCAR-CT in terms
of how it would execute in a multi-architecture event. This converged execution contains
(1) simulations that need not be aware that multiple architectures are in use, (2) parts of the
support infrastructure of the legacy infrastructures, and (3) a common shared library for
communication. The LVCAR-CT selected this concept because it requires no changes to the
simulations (which are the area of greatest Department of Defense modeling and simulation
investment). As a result, changes under this proposed solution impact only a few infrastructure
providers and require significantly less investment to achieve convergence.

Construction of software to gradually evolve legacy infrastructures and achieve
convergence involves several years of effort. Based on initial return on investment calculations,
substantial returns are available in the out years.

Live-Virtual-Constructive Architecture Roadmap Implementation,
Convergence Final Report

Page 2

1. REPORT DEVELOPMENT PROCESS

The purpose of the Live-Virtual-Constructive Architecture Roadmap (LVCAR) Study
was to develop a vision and a supporting strategy for achieving significant interoperability
improvements in live, virtual, and constructive (LVC) simulation environments. The study
observed that the architectures available today solve most of the problems of most of their users
and that they are being improved to better serve their constituency. These architectures have
continued to evolve and mature based on changing user requirements. Multiple architectures
allow users to select the architecture that best meets their needs and, thus, provide an incentive
for architecture developers and maintainers to competitively keep pace with technology and stay
closely engaged with emerging user requirements, including requirements for better connections
between architectures (Figure 1).

Figure 1. LVC Simulations Interact with Real Command and Control to
Provide a Rich Environment for Engineering, Training, and Testing1

The LVCAR Study examined several courses of action before making its
recommendations. The recommended activities propose to lower the time and cost required to
integrate multi-architecture events by building better bridges between the legacy architectures
and making the architectures more compatible. An LVCAR Convergence Team (LVCAR-CT)
was chartered to explore the problem of converging the current architectures, including the
production of this report. The convergence approach recommended to the LVCAR-CT evolves
each architecture to meet the needs of users while favoring common techniques and solutions.

1 Figure received from Joint Forces Command (JFCOM).

Live-Virtual-Constructive Architecture Roadmap Implementation,
Convergence Final Report

Page 3

Rather than make the current High Level Architecture (HLA) like the current Test and Training
Enabling Architecture (TENA), the goal is to make future HLAs more like future TENAs.

Subject matter experts (SMEs) from each architecture participated together on the
LVCAR-CT. Each SME provided existing documentation resources and identified where in the
documents to extract the key services and tools. This report describes the converged architecture
envisioned by the LVCAR-CT in terms of how it would execute in a multi-architecture event.
This converged execution contains (1) simulations that need not be aware that multiple
architectures are in use, (2) parts of the support infrastructure of the legacy infrastructures, and
(3) a common shared library for communication. The LVCAR-CT selected this concept because
it requires no changes to the simulations (which are the area of greatest Department of Defense
[DoD] investment). As a result, changes impact only a few infrastructure providers and require
significantly less investment to achieve convergence.

The LVCAR-CT SMEs completely affirm the LVCAR study findings with respect to
architectural convergence. Defining a new architecture to which all simulation work would be
migrated or selecting a single architecture at the expense of users of other solutions are
unfeasible approaches from an engineering perspective and would lead to huge programmatic
problems. Each of the four architectures possesses unique features, although the unique features
are not required by all users. Expanding an existing architecture or building a new architecture to
cover all requirements would be extremely difficult. The better engineering design uses a
system-of-systems approach in which each architecture continues to support the existing user
requirements and the architectures cooperate to exchange the information that is meaningful to
all.

1.1 REPORT FORMAT

The report is constructed in four major parts: (a) the introduction; (b) the converged
concept of execution; (c) the detailed activities needed for each architecture to adopt the
converged concept, and (d) the recommended course of action and its return on investment
(ROI). In addition, a list of references used in this report is provided in Appendix A. Appendix B
provides a list of abbreviations and acronyms.

1.2 CONVERGENCE APPROACH

Working from the Architecture Reference Manual [Saunders et al., 2009],2 the LVCAR-
CT SMEs examined the runtime services provided by each of the legacy architectures. Services
were classified as “architecture specific” where they did not need to be interoperable between
architectures for effective multi-architecture events. These services would be available to
simulations built for the legacy architecture, but nothing would be lost if they were not available
to simulations built with other architectures. This classification does not reflect negatively on the

2 References may be found in Appendix A.

Live-Virtual-Constructive Architecture Roadmap Implementation,
Convergence Final Report

Page 4

service or architecture; it only partitions services with multi-architecture implications to reduce
the scope of the analysis effort.

The remaining services, called the “converged” services, must be aligned for the
architectures to work together without loss of functionality. To aid in understanding the
converged services, Figure 2 shows the overlaps in data used by the converged services.
Enterprise metadata is shared between infrastructure elements to convey which simulations are
connected to the execution and what their publications or subscriptions cover. This data is
generally not available to simulations directly, though the HLA Management Object Model
(MOM) provides some access for HLA federates. All the architectures communicate Time-
Space-Position Information (TSPI) describing the location and motion of each vehicle, player, or
simulated entity in the execution. They also communicate other attributes of these entities, from
headlights to turret positions. Both HLA and TENA support more general object models,
allowing the simulation designer to define additional non-entity attributes in the execution.

Enterprise Metadata

Entity TSPI Instance Data

Other Entity Instance Attributes

Non‐Entity Attributes

CTIA TENA HLA DIS

Figure 2. Legacy Architecture Data Model Overlap

The LVCAR-CT assumes that the format and common content description for multi-
architecture object models will be a product of the Joint Composable Object Model (JCOM)
effort. Similarly, the LVCAR Common Capabilities efforts to develop common systems
engineering processes, enable reuse, and define common execution agreements are necessary
precursors for adoption of converged architectures.

Three alternatives for implementing the converged services were considered:

(a) Establish a wire standard defining how all architectures would communicate the data
shown in Figure 2;

(b) Establish a static Application Programmer’s Interface (API) and implementation of
the converged services; and

(c) Build a shared implementation of the converged services.

Live-Virtual-Constructive Architecture Roadmap Implementation,
Convergence Final Report

Page 5

Both approaches (a) and (b) add an extra layer to the existing architectures, essentially
incorporating a bridge to the converged architecture within the infrastructure of the legacy
architectures. The overhead, in terms of additional transformations and data wrappers, makes
these approaches undesirable from a technical perspective. They also have additional support
costs, and architecture developers must maintain all the code needed to construct the architecture
infrastructure plus the code to support the converged architecture. Successful convergence would
be more economical under approach (c), where the implementation of some services would be
pulled out of each architecture and replaced with a shared implementation. The concept of a new
wire standard was examined in the LVCAR study and found to have low return on investment
(ROI). Both approaches (b) and (c) include an implementation of the converged services, and
future LVCAR-CT efforts focus on defining and using this implementation. This report refers to
the converged services implementation as “Common Simulation Infrastructure (CSI)” and the
modified part of the legacy architecture infrastructure as the “CSI coupler” for that legacy
infrastructure.

Figure 3 shows how legacy architecture infrastructures have CSI incorporated into them
along a seam covered with the CSI coupler. The programming interface to the CSI will not be a
static API, but rather a modern object-oriented library implementation that provides a
compromise among the legacy architectures. By taking a spiral-development approach to
developing the CSI, the amount of coupler code will be minimized.

HLA
Federate

TENA
Application

RTI BGCSI

Extensions

. Middle
. ware

CSI

Standard
API

DIS
Simulation

DIS
PDUs

. Gateway
to
DIS

CSI

Network

CTIA
Simulation

Extensions

. Middle
. ware

CSI

Standard
API

Figure 3. Common Distributed Architecture Overview

Several concepts for CSI were discussed, but the implementation decisions should be
postponed to the detailed design phase. For example, the open source OpenSplice3
implementation of the Object Management Group (OMG) standard Data Distribution Service
(DDS) could form the foundation for an open source CSI that is available as an OpenSplice
extension.

3 Bold, camel-case text is used throughout the document and denotes computer function.

Live-Virtual-Constructive Architecture Roadmap Implementation,
Convergence Final Report

Page 6

2. CONVERGED EXECUTION

The purpose of a converged execution approach is to allow the aligning of the Common
Training Instrumentation Architecture (CTIA), Distributed Interactive Simulation (DIS), HLA,
and TENA architectures to work together without loss of functionality. Using the selected
alternative from Section 1.2, building a shared implementation of converged services, the design
and implementation approach is to pull out some of the common services from of each of the
architectures and replace the services with a shared implementation. Since the primary role of the
architectures is to provide a conduit for communications among simulations, it will be these
services that the CSI will address.

2.1 OVERVIEW OF THE DESIGN CONCEPT

The converged execution will be realized as a migration from the current state of
independent architectures to a future state where the architectures employ one or more common
components. The conceptual illustration of this migration is shown in Figure 4, using a “before
and after” diagram and the migration of code shown by the arrows in the middle. Before this
migration is performed (diagram on the left), the architecture component layer is composed of,
although not necessarily in a modular fashion, an architecture-specific interface with which the
simulation interacts, architecture-specific functionality, architecture-specific data formats, and
common architecture functionality, such as enterprise metadata services and entity
communication. After the migration to a converged execution (diagram on the right), these
components are modularized to allow the common functionality to be replaced with the CSI.
This allows the CSI to be written in such a manner that it is architecturally independent and
reusable.

This approach also reduces the footprint of the architecture-specific code and preserves
the performance of existing simulations. The CSI coupler plays a key role in the migration. It is
architecture specific, and performs the translation and mapping between the architecture’s data
structures and the common data structures used by the CSI. Over time, as new versions of the
CSI and new versions of the architecture-specific components are released, a convergence on the
internal data structure will naturally evolve, reducing the size of the CSI coupler.

The CSI will provide additional interface calls that allow simulation code that has been
modified to take advantage of these additional calls to query the CSI directly, using what we
refer to as CSI Extensions (shown on the right side of Figure 4). The CSI Extensions will be
available for simulation code that needs to directly query the CSI to obtain, for example, the
multi-architecture status or to retrieve CSI activity listings. This interface will be needed for
debugging, testing, and verification of proper operation of the multi-architecture. Although a
simulation could access the CSI directly, the design is not to allow a simulation to skirt the use of
the architecture-specific interface by only allowing visibility of the CSI Extensions interface to
the simulation.

Live-Virtual-Constructive Architecture Roadmap Implementation,
Convergence Final Report

Page 7

Migration Plan

Common Simulation Infrastructure

Architecture‐Specific
Component

CSI Coupler

SimulationSimulation

Architecture Component(s)

Before Converged
Execution

After Converged
Execution

Migrated without
Modification

Replaced with CSI Layer

Common Functionality
such as Enterprise

Metadata Services and
Entity Communication

Architecture‐Specific
Interface for Simulator

Architecture‐Specific
Interface for Simulator

Modularized and Migrated

Implementation of
Common Services in

Reusable Form

Architecture‐Specific
Functionality

Architecture‐Specific
Functionality

Modularized and Enhanced
with Mappings to CSI
Concepts/Entities as

Needed

Modularized and Migrated

Architecture‐Specific
Data Formats

CSI
Extensions

Figure 4. Conceptual Migration from Before Converged Execution to After

When combined to form a distributed simulation, as illustrated in Figure 5, the CSI
performs all network communication, freeing the architecture-specific layers of code from
having to perform that task. To permit this, a messaging emulation capability for the
architecture-specific network communication (an architecture communicating to the same
architecture, shown in the illustration as the same color architectures) is provided by the CSI.

Simulation Simulation Simulation Simulation Simulation Simulation

Architecture‐
Specific

Component

CSI Coupler

Architecture‐
Specific

Component

Architecture‐
Specific

Component

Architecture‐
Specific

Component

Architecture‐
Specific

Component

Architecture‐
Specific

Component

CSI, Operating at the Multi‐Architecture Level

CSI Coupler CSI Coupler CSI CouplerCSI Coupler CSI Coupler

Figure 5. Layered Communication Diagram for the Converged Execution

Live-Virtual-Constructive Architecture Roadmap Implementation,
Convergence Final Report

Page 8

Figure 2 depicts the four types of data that should be communicated within the multi-
architecture. To address this, the initial conceptual design for the CSI addresses these data types
by providing the following services. These services are provided as examples, knowing that a
future detailed interface design would rigorously detail the parameters, return values, exceptions,
and callbacks, as well as verifying that the suite of functionality provided is complete enough to
allow multi-architectures to fully operate.

 Enterprise metadata services: example services include multi-architecture
infrastructure initialization and termination, and connectivity and life-cycle status.

 Entity TSPI instance services and “other entity” instance services: example services
include persistent- and non-persistent-entity type creation, modification, publication,
and subscription; entity creation, modification, and sending; non-persistent-entity
(message) creation and sending.

 Non-entity attributes services: example services include attribute publication,
subscription, sending, and synchronization point services.

To show the type of proposed interactions, three examples will be explained in further
detail in the following subsections: multi-architecture infrastructure life cycle, persistent entity
operations, and messaging operations.

2.2 MULTI-ARCHITECTURE INFRASTRUCTURE LIFE CYCLE

To provide a robust communications layer for a multi-architecture execution, the CSI will
need to coordinate initialization, a mechanism to determine its state, and a controlled
termination. The proposed set of primitive methods for the multi-architecture infrastructure life
cycle are the request for the creation of the multi-architecture infrastructure, the request to
terminate the multi-architecture infrastructure, a request by the individual simulations to join the
multi-architecture infrastructure, and a request by the individual simulations to leave. Figure 6 is
the state diagram of the multi-architecture infrastructure lifecycle.

The Create method allows an optional parameter of naming the multi-architecture
infrastructure. The Join, Leave, and Destroy methods are associated with the multi-architecture
infrastructure itself. The Join method takes a name for the joining simulation as a parameter, so
that other simulations can refer to it by a human-readable name. Callbacks are provided by the
CSI to inform one simulation that other simulations are joining or leaving the multi-architecture
infrastructure. The Destroy method will not destroy the multi-architecture infrastructure if there
are any simulations that have not left the multi-architecture by calling the Leave method.
Additional methods may need to be added to address the termination of rogue or run-away
simulation processes that have not called Leave.

Live-Virtual-Constructive Architecture Roadmap Implementation,
Convergence Final Report

Page 9

Create

Initial State:
Operational

Multi‐
Architecture

Multi‐
Architecture

with 0
Members

Destroy

Multi‐
Architecture

with 1
member

Join

Leave

Multi‐
Architecture

with n
members

Join [n <‐ 1]

Leave [if n =
2]

Leave [if n > 2; n <‐ n‐1]

Join [n <‐ n+1]

Figure 6. The Multi-Architecture Infrastructure Life Cycle

2.3 PERSISTENT ENTITY OPERATIONS

There are two basic types of entities that are communicated in a distributed multi-
architecture infrastructure: persistent entities that we will refer to as “objects” and non-persistent
entities, referred to as “messages.”

To maintain compatibility with most simulation architectures, objects may have the
ability to be instantiated, have methods, and use remote method invocation. This approach is in
contrast to having objects being simply a handle that is tracked for its existence. If a simulation-
specific Data Exchange Model (DEM) was used as the core API simulation mechanism that
identified what a simulation is capable of publishing and receiving, then “adapter” software
modules would likely be developed and used that provide DEM to Architecture Neutral Data
Exchange Model (ANDEM) transformation and exchange support.

The state diagram for defining object types and instantiating and updating objects is
shown in Figure 7. Currently, in most distributed simulations implementations there is a known
list of object types that will be used throughout the lifetime of the simulation. In the future, it is
assumed that the creation of new object types during the running of the simulation will be used
frequently, and simulations will be written with the agility to handle the processing of these new
object types. For these cases, the CSI method ObjectTypeDefinition can be used, providing
ANDEM definitions of object structure as a parameter, which can be converted to a Universal
Data Exchange Model (UDEM) that defines the new object types. Given this information, the
CSI will communicate these new object types to the other CSIs in the multi-architecture. Each
CSI will perform callbacks to their respective CSI coupler, allowing the CSI coupler to

Live-Virtual-Constructive Architecture Roadmap Implementation,
Convergence Final Report

Page 10

determine how to address type naming issues, type conflicts, and type mapping given its
architecture-specific nature.

Simulations need to indicate that they will be publishing objects of a known object type.
Callbacks will notify the other simulations of this intent. Once a simulation has indicated its
intent to publish, an object can be created using the DeclareObject method. This object is then
sent to other simulations via a SendObjectUpdate method. To indicate to the multi-architecture
infrastructure that an object is no longer needed, the simulation that owns the object calls the
DeleteObject method, which informs the other simulations that the object is deleted.

ObjectTypeDefinition

Initial State:
no

ObjectTypes
and no Objects

Destroy [Termination of the Multi‐Architecture]

PublishObject
Type

List of Object Types Defined for a Simulation

No Objects
Published or
Declared

Object Type
Published by a
Simulation

Object Created
Declare
Object

Object
PublishedSendObject

Update

Leave [Termination of the simulation interaction]

DeleteObject

Leave
Leave

DeleteObject

SendObject
Update

ObjectTypeDefinition

Figure 7. Life Cycle of Object Types and Objects

A method, ReserveObjectName, allows an object name to be formally recognized. Once
called, the multi-architecture infrastructure is notified that an object name is to play a unique role
within the multi-architecture infrastructure.

An example of the sequence of activities for an object is shown in Figure 8, illustrating
the deletion of an object by a HLA Federate, which is processed by a TENA Logical Range that
is subscribed to the object type. The CSI coupler for simulation A converts the HLA
DeleteObjectInstance call to the CSI DeleteObject call, and the appropriate communication to
the remainder of the multi-architecture is performed. Since Logical Range B did not own the
object, it only needs to be notified that the object has been deleted, which is passed from its CSI
coupler to the Logical Range.

Live-Virtual-Constructive Architecture Roadmap Implementation,
Convergence Final Report

Page 11

DeleteObject
Instance(

objectInstance
Designator, tag)

DeleteObject
Instance(

objectInstance
Designator, tag) deleteObject(

ObjectID)
deleteObject(
ObjectID)

Ack of Delete
[status details]

ObjectID

Message
Retraction
Designator

Message
Retraction
Designator

DeleteObject
callback(
ObjectID) Object.destroy(

ObjectID)

CSI Coupler will need to
retain a mapping between

ObjectIDand Object Instance
Handles so the Object
Instance Handle can be

deleted

HLA‐Specific
Interface

Component
for A

CSI Coupler
for A

TENA‐
Specific
Interface

Component
for B

CSI Coupler
for B

CSI for A CSI for B
Simulation
(Logical
Range) B

Simulation
(Federate) A

Figure 8. Sequence Diagram for Multi-architecture Object Deletion

2.4 MESSAGING OPERATIONS

The state diagram (Figure 9) regarding message types and messages is very similar to that
of object types and objects (Figure 7), except that messages do not have persistence and,
therefore, cannot be updated over time. After a message type is defined, the message type can be
indicated as published by a simulation, and subsequently a message can be created using a
DeclareMessage method associated with that message type. Messages do not have pre-defined
content, so the message can be populated using a PopulateMessage method and subsequently
sent to other simulations using a SendMessage method. A simulation can reuse a message by
either re-populating it and/or re-sending it. Since a message is not persistent within the multi-
architecture infrastructure, there is no need to indicate destruction of it.

An example of the sequence of activities for a message is shown in Figure 10, illustrating
the sending of a message by a TENA Logical Range B, resulting in a HLA callback to HLA
Federate A that is subscribed to the message type. The CSI coupler for Logical Range B converts
the TENA-triggered method to the CSI CreateMessage call, followed by a PopulateMessage,
followed by a SendMessage call, and the appropriate communication to the remainder of the
multi-architecture execution is performed. In this case, the SendMessage results in an HLA
ReceiveInteraction callback to Federate A.

Live-Virtual-Constructive Architecture Roadmap Implementation,
Convergence Final Report

Page 12

MessageType

Definition

Initial State:
noMessage
Types and no

Messages

Destroy [Termination of the Multi‐Architecture]

PublishMessage

Type

List of Message Types Defined for a Simulation

NoMessages

Published or
Declared

Message Type

Published by a
Simulation

Message

Created but
not PopulatedDeclare

Message

Send

Message
Leave [Termination of the simulation interaction]

Leave

Message

PopulatedPopulate

Message

Leave

Populate

Message

MessageType

Definition

Figure 9. Life Cycle of Message Types and Messages

StealthFighter.
MissileAway()

StealthFighter.
MissileAway.

ChangeTrigger()
createMessage(
messageType
ToCreate)

MessageHandle

Populate
Message(
Message,

AttributeList)

Send
Message(
Message)

Send
Message(
Message)

Receive
Message
callback(
Message)

Receive
Interaction
callback(

InteractionClass
Designator,

ValuePairs, tag)

Receive
Interaction
callback(

InteractionClass
Designator,

ValuePairs, tag)

HLA‐Specific
Interface

Component
for A

CSI Coupler
for A

TENA‐
Specific
Interface

Component
for B

CSI Coupler
for B

CSI for ACSI for B
Simulation
(Logical
Range) B

Simulation
(Federate) A

Figure 10. Sequence Diagram for Multi-architecture Message Passing

Live-Virtual-Constructive Architecture Roadmap Implementation,
Convergence Final Report

Page 13

3. CONVERGENCE ACTIVITIES

This section describes the activities necessary to get from the current architecture
implementations to the recommended converged approach.

3.1 CONVERGENCE SYSTEMS ENGINEERING (CSE)

The convergence approach shown in Figure 4 depends on a systems engineering process
that displaces functionality from the legacy architecture infrastructures into the CSI. Pursuing a
spiral development approach to this displacement minimizes the risk exposure while providing
incremental deliverables. These systems engineering activities will involve reusable software
engineering expertise and detailed technical knowledge of the legacy architecture
implementations.

3.1.1 CSE Requirements and Risk Analysis

The state and sequence diagrams from Section 2 will be completed during the LVCAR-
CT effort for all the use cases developed by the LVCAR-CT. This baseline technical approach
will provide a reference for spiral development of a requirements specification for the converged
approach. The requirements will be mapped to the available reusable software with unrestricted
rights and the resulting designs evaluated for technical risk. CSI implementation priorities will be
set to retire the risks as quickly as possible.

3.1.2 CSE Enterprise Metadata Communication

The internal enterprise metadata shown in Figure 2 must be communicated through the
CSI before simulation data paths can be established. Initial integration and checkout of the CSI
implementation and coupler prototypes can be conducted using this information.

3.1.3 CSE Prototype Evaluation

Evaluation criteria must be set as the CSI implementation proceeds and test results from
coupler prototypes are available. The assessment of this software demonstrates that the
implementation risks have been addressed and may indicate new areas for implementation.

3.2 COMMON TRAINING INSTRUMENTATION ARCHITECTURE (CTIA)

CTIA is based on a Service-Oriented Architecture (SOA). Live Training Transformation
(LT2) components within the CTIA framework interact with services via defined Interfaces
(defined using the Common Object Request Broker Architecture [CORBA] Interface Definition
Language [IDL]). The components use these CTIA services to mediate their interaction with one
another through the CTIA framework. As shown in Figure 11, the integration approach for
converging CTIA is centralized at the Range Operations Center. Responsibility for these
activities should be with the CTIA architects in order to maintain close integration with the rest
of the CTIA solution.

Live-Virtual-Constructive Architecture Roadmap Implementation,
Convergence Final Report

Page 14

Figure 11. CTIA Convergence Focused on Central Range Operations Center

3.2.1 CTIA Execution Interfaces

The CTIA notion of an execution does not expose the Join and Connect services needed
by the coupler. CTIA must associate the CSI execution name with a CTIA exercise and represent
multi-architecture objects within the CTIA database. The architects need to create a CTIA-to-
CSI gateway component that provides an interface between the multi-architecture objects of the
CSI and internal CTIA messages to support creating a converged exercise. The CTIA-to-CSI
coupler component provides a translation between the CSI functionality and the existing CTIA
Services IDL. If changes to the CTIA Services IDL are required, the architects can use the CTIA
Architecture Working Group (AWG) forum to request the change.

The architects also need to create a CTIA-to-CSI coupler that provides an interface
between the multi-architecture objects of the CSI and internal CTIA messages to support
destroying a converged exercise. The CTIA-to-CSI coupler provides a translation between the
CSI functionality and the existing CTIA Services IDL. If changes to the CTIA Services IDL are
required, the architects can use the CTIA AWG forum to request the change.

The architects also need to create a CTIA-to-CSI coupler that provides an interface
between the multi-architecture objects of the CSI and internal CTIA messages to support
creating a message instance to be sent to another object within the converged exercise. The

CTIA routers at each wireless link perform
“local” message routing and support wireless
nodes that are temporarily out of
communication

Live-Virtual-Constructive Architecture Roadmap Implementation,
Convergence Final Report

Page 15

CTIA-to-CSI coupler provides a translation between the CSI functionality and the existing CTIA
Services IDL. If changes to the CTIA Services IDL are required, the architects can use the CTIA
AWG forum to request the change.

3.2.2 CTIA Interactions

The message constructs of CTIA are defined by the CTIA data model. Some extension to
support general object models could be made. The architects need to create a CTIA-to-ANDEM
transform that provides an interface between the ANDEM objects and the CTIA Object Model.
The CTIA-to-ANDEM transform provides a mapping between the ANDEM objects and the
existing CTIA Object Model. If changes to the CTIA Object Model are required, the architects
can use the CTIA AWG forum to request the change.

The architects also need to create a CTIA-to-CSI coupler that provides an interface that
allows the objects used within the CTIA data model to be declared as objects within the
converged federation LVC exercise. The CTIA-to-CSI coupler provides a translation between
the CSI functionality and the existing CTIA Services IDL. If changes to the CTIA Services IDL
are required, the architects can use the CTIA AWG forum to request the change.

3.2.3 CTIA Transfer of Ownership

The CTIA notion of ownership is static. Support for ownership transfers has been done
on a case-by-case basis to support live player rest periods. CTIA needs to (1) add capability to
transfer “ownership” between live player and simulation and (2) allow attribute update from an
external source. The architects need to perform a functional thread analysis to articulate one or
more use case scenarios that describe the conditions under which transfer of object ownership
would occur. Each use case scenario can be decomposed to identify the (1) user interaction with
the system; (2) interactions between components; (3) expected capabilities (i.e., inputs, outputs,
functions, and constraints); (4) sequence diagram details; (5) description of the data elements to
be exchanged; and (6) relevant system design decisions and associated decision rationale. Once
the thread analysis is complete, the architects should create a more detailed plan for implemented
the ownership transfer capability within CTIA in coordination with the CTIA AWG.

3.3 DISTRIBUTED INTERACTIVE SIMULATION (DIS)

DIS uses a wire protocol, standardized in Institute of Electrical and Electronics Engineers
(IEEE) standard 1278.1 [DIS Committee of the IEEE Computer Society, 1995] and IEEE
standard 1278.1a [DIS Committee of the IEEE Computer Society, 1998] that allows
interoperability between real-time simulations of weapons platforms. DIS is a network protocol
with hundreds of implementations. Therefore, it is unreasonable that every implementation
would be expected to be redesigned to use the CSI, as is hoped for the standard implementations
of other architectures. As shown in Figure 3, DIS will require an additional gateway computer to
host the CSI and coupler for DIS. The responsibility for DIS convergence must be shared

Live-Virtual-Constructive Architecture Roadmap Implementation,
Convergence Final Report

Page 16

between the DIS advocate and the LVCAR Common Gateways and Bridges (LVCAR-CGB)
team.

3.3.1 DIS to CSI Gateway

The general function of the gateway is a standard DIS interface adapted to run in
conjunction with the CSI interface, translating each DIS Protocol Data Unit (PDU) to a CSI
update and vice versa. Stateful PDUs translate to entity/object updates and transient PDUs
translate to interactions. The gateway performs network socket operations on the DIS side to
send and receive DIS PDUs. It also performs Endian conversion and keeps an internal database
of entities and objects so that heartbeat and dead reckoning can be properly accomplished. The
bulk of the code is the actual translation between DIS PDU format and the Data Exchange Model
used by the CSI for every attribute and parameter.

3.3.2 DIS Gateway Requirements

The DIS/CSI gateway software needs to support DIS network communication using both
broadcast and multicast user datagram protocol datagrams. Multiple simultaneous multicast
groups are used.

The DIS/CSI gateway needs to translate between a single DIS exercise and a single CSI
multi-architecture execution. Multiple exercises/federations can be handled by running multiple
instances of the gateway.

The gateway transmits DIS PDUs at their proper heartbeat rates between updates. Entities
and objects time out if no PDUs are received in the proper timeout period. Dead reckoning is
performed on Entities as specified by the DIS standard. The heartbeat, timeout, and dead-
reckoning parameters need to be configurable.

3.4 HIGH LEVEL ARCHITECTURE (HLA)

There are several versions of the HLA. The first, referred to simply as HLA 1.3, was
sponsored by the United States (U.S.) DoD Modeling and Simulation Coordination Office
(formerly, Defense Modeling and Simulation Office). A subsequent version, often referred to
simply as 1516 [IEEE FEDEP Working Group, 2003; Simulation Interoperability Working
Group: IEEE1516-2000, 2000, IEEE1516.1-2000, 2001, IEEE1516.2-2000, 2001], is an IEEE-
approved refinement to the original HLA specification. In like manner, a new HLA standard
called, colloquially, 1516 Evolved is in the final IEEE approval process. HLA uses a
marketplace with multiple vendors who implement and sell Run-Time Infrastructure (RTI)
software. While participation by all RTI developers in the CSI activity is possible, particularly
where an open-source paradigm can be employed, only market forces can assure that all RTIs
will become compatible with CSI. As a result, there may be a more lengthy migration period
until full convergence benefits can be achieved. The possibility also exists that users may change
which RTI they use in order to interoperate through CSI.

Live-Virtual-Constructive Architecture Roadmap Implementation,
Convergence Final Report

Page 17

3.4.1 HLA Convergence Assessment

Extending support to HLA for multi-architecture interoperability should be a fairly
straightforward evolutionary step. Consider that if each federate was engineered to work as
described by its simulation object model (SOM), whereby the SOM is used to declare the
federate’s simulation data exchange capabilities, then it would be fairly straightforward to map
various federation object models (FOMs) used for federation participation to a federate’s SOM.
However, the reality is that this flexibility is not commonplace for HLA federations. The
majority of HLA federates are built to work with a FOM (not a SOM). Because the exchange
capabilities of a federate are often built with a FOM in mind, not a SOM, the refactoring and
recompilation of the federate is often needed for any new FOM (or RTI) to which it must adhere.

The bottom line is that most HLA federates are designed to work with one FOM, one
version of the HLA standard, and one RTI. However, as described by the IEEE 1516 HLA
standard [Distributed Interactive Simulation Committee of the IEEE Computer Society, 1995,
1998], it is possible to support concurrent federation executions. This means that more than one
FOM may exist and be used among many federates, but again, most federates are limited to
supporting just one. If one couples these limitations with the need for HLA federates to
participate in exercises that may consist of simulations supporting other architectures, including
TENA, DIS, CTIA, or other variants of HLA, the breadth of limitations that need to be overcome
is apparent.

It is through CSI that principles such as the CSI coupler concept described previously for
SOM-based HLA federates can be used. A CSI coupler module would allow a FOM-oriented
federate to more quickly adapt to support other types of FOMs. This would also facilitate multi-
FOM participation, which has always been an intended capability of HLA. Furthermore, a CSI
coupler module could help eliminate RTI vendor dependence for federation executions, allowing
large numbers of federates to interoperate. It is through CSI that federates adhering to different
HLA variants and simulations adhering to other interoperability standards can interoperate
cooperatively without requiring major modifications (i.e., refactoring and recompilation) or large
laden gateways.

3.4.2 HLA RTI Implementation

The need will exist for RTIs to use additional code that supports the adaptation of FOMs
to what is anticipated to be a Universal Data Exchange Model (UDEM), which reflects the data
exchanged through CSI. The FOM-to-UDEM adaptation is identified as a transform module,
located within the CSI coupler.

The anticipation is that RTI vendors could help develop the necessary CSI coupler
software, which exploits and leverages its RTI, for their customers. In addition, because of the
FOM-to-UDEM transform modules that are anticipated, it will likely be necessary for RTI
vendors to provide a means for their customers to integrate either stock or custom transform
modules and allow their customers to recompile a coupler with their integrated RTI library.

Live-Virtual-Constructive Architecture Roadmap Implementation,
Convergence Final Report

Page 18

3.4.2 HLA Multi-Architecture Testing

The HLA community will require testing to demonstrate that competing RTI vendors’
products can interoperate through CSI. The effectiveness of this communication and the ability
to bridge both vendor difference and HLA specification differences will be essential to
widespread adoption.

3.5 TEST AND TRAINING ENABLING ARCHITECTURE (TENA)

The computational metaphor of TENA is different from the protocol-based DIS or more
service-oriented architectures of CTIA or HLA. TENA’s Domain-Specific Software Architecture
is a specification of the common software building blocks of a domain, based on a set of objects
that model that domain that leads to a pool of reusable, interoperable, composable applications. It
is through calls on objects within this framework that a simulation is constructed and executed.
Convergence activities will involve changes to the TENA middleware as well as automatic code
generated for Proxy and Servant objects used in the TENA architecture (see Figure 12).

TENA Middleware

TENA Application C

User
Application
Code

Servant Proxy

Proxy ProxyServant

Figure 12. In Addition to Middleware, the TENA Architecture Includes Servant
and Proxy Objects Generated Automatically by TENA Tools

3.5.1 TENA Enterprise Metadata

The TENA data model includes parts of the execution data used by CSI. Additions will
be required to include execution information such as simulation application names. No
significant or structural changes are expected.

Live-Virtual-Constructive Architecture Roadmap Implementation,
Convergence Final Report

Page 19

3.5.2 TENA Additional Features

The converged services of Section 1.2 are not all currently supported in TENA.
Synchronization points and simulation timestamps would have to be added to TENA
middleware. Current TENA simulations, which do not use these features, would not need to be
changed. Changes to use these features would be made when a TENA simulation is used in a
multi-architecture event.

3.5.3 TENA Ownership Transfer

The ownership transfer approach possibilities for TENA require ongoing investigation.
TENA objects are atomic, and object attributes can only be transferred as a complete set. New
TENA mechanisms that allow a servant object to be seamlessly replaced by a proxy object
would be required. At the least, all the automatically generated code for a simulation would have
to be rebuilt, but other changes might be necessary to enable and control such transfers.

Live-Virtual-Constructive Architecture Roadmap Implementation,
Convergence Final Report

Page 20

4. COURSES OF ACTION

Development of CSI could take many tracks. The maximum rate of change is limited by
the pace at which change is adopted within the legacy architectures. HLA and DIS bring out new
versions of the standards every 5 years, although some users take several years to migrate to
them. TENA and CTIA make smaller changes every year and face similar migration periods.
Even if CSI were written in a year, it would be uncharacteristic to see users adopt the new
approach in that period of time. The resulting ROI would be very poor, the expenses would all
occur up front, and the savings would begin to accrue years later. Therefore, a slower,
incremental, development approach produces the same results with a higher ROI.

Each use case has been examined. The LVCAR-CT will create state and sequence
diagrams of the use cases in order to understand which functionality belongs to the CSI, which
belongs to the coupler, and which remains within the legacy architecture. The team will draft
requirement specifications for each part of the converged architecture. These detailed design
artifacts form the basis for incremental evaluation for risks so that risk mitigation plans can be
created.

4.1 COURSE OF ACTION DEVELOPMENT

To develop courses of action, three factors were identified that can be used to create
alternatives for implementation of each incremental block:

1. The set of architecture functionality that will be provided. Four major blocks of
functionality were identified:

a. Life-cycle functions—These functions, including multi-architecture infrastructure
initialization (create), status, and termination (destroy) followed by joining and
leaving, should occur first.

b. Nonpersistent message passing—At this stage, each legacy architecture would
develop type declaration translations to the UDEM as well as publications and
subscriptions messages. Publishing simulations would populate messages and send
them through their couples to the CSI and onward to the subscribed simulations.

c. Persistent objects—The architectures would implement a common approach to
entity-type creation, entity creation, modification, and updating.

d. Advanced features—Transfer of ownership, synchronization points, time
management, and other advanced features would be implemented.

2. The type of simulation to be supported.

a. Constructive

b. Virtual and Constructive

Live-Virtual-Constructive Architecture Roadmap Implementation,
Convergence Final Report

Page 21

c. Live, virtual, and constructive

3. The architectures to be integrated.

a. HLA and TENA

b. HLA, TENA, and DIS

c. HLA, TENA, DIS, and CTIA

Courses of action to address these factors incrementally were developed. The rationale
for this approach was to provide incremental improvements to DoD M&S activities while
reducing risk. Implementing all functionality for all types of simulation for all four architectures
simultaneously all at once would be very risky and would take several years to provide an initial
useful capability. Three courses of action to incrementally provide capability were developed
and are shown in Figure 13.

Figure 13. Courses of Action Partition the Convergence Activities into Incremental
Stages.

Course of action (COA) 2 provides the best balance of functionality and development risk.
COA3 was discarded since it would spend a long time focusing on just one type of simulation
(constructive) before providing a capability to users of other types of simulations. COA2 was
judged to be superior to COA1 because both HLA and TENA have previously demonstrated
effectiveness across live, virtual, and constructive applications. Each functionality block
development begins with an architecture design activity, proceeds to development with
prototyping, then based on the experience gained, proceeds to a fielded capability.

Functionality Set A

Constructive Virtual + Constructive

H+T H+T+D All 4 H+T H+T+D All 4

Full LVC

H+T H+T+D All 4

Functionality Sets A + B

Constructive Virt

H+T H+T+D All 4 H

Functionality Set A

HLA + TENA HLA + TENA + DIS

C V + C LVC

All 4

C V + C LVC C V + C LVC

Functionality Sets A + B

HLA + TENA

C V + C LVC C

Constructive

Functionality Set A Functionality Sets A + B Functionality Sets A+B+C

H+T H+T+D All 4 H+T H+T+D All 4 H+T H+T+D All 4

Course of Action 1

Course of Action 2

Course of Action 3

Time

Functionality Sets A+B+C

H+T H+T+D All 4

V+C

Fun

H+T

Live-Virtual-Constructive Architecture Roadmap Implementation,
Convergence Final Report

Page 22

4.2 RETURN ON INVESTMENT ANALYSIS

An ROI analysis was conducted to assess the benefits in light of the costs of implementing the
chosen COA. The costs estimate included both government-funded costs and industry
contributions. For HLA, the assumption was made that the three current RTI vendors would
participate at some level, covering their own costs. The government costs include software
engineers to lead the architecture development, prototyping, and development of the CSI
components, as well as software engineers with expertise in each architecture to participate in the
prototyping and to integrate the resulting CSI components into the architecture-specific
middleware. Development of the four blocks of functionality and the sustainment for the
resulting products across a timeline is shown in Table 1.

Table 1. Execution Schedule for COA2

Development Activity

Year

Block A: Life‐cycle management

Architecture design

Experimentation/prototype

Fielded capability

Block B: Nonpersistent messages

Architecture design

Experimentation/prototype

Fielded capability

Block C: Persistent objects

Architecture design

Experimentation/prototype

Fielded capability

Block D: Advanced features

Architecture design

Experimentation/prototype

Fielded capability

Sustainment

The return for the implementation effort was quantified by estimating the reduction in cost to
conduct multi-architecture events. The frequency of such events was estimated in the LVCAR
Phase 1 effort and was broken down into the number of small, medium, and large events
conducted per year. A growth in the number of events per year was estimated. The LVCAR
Phase 1 report also provided an estimate of the level of effort to design, develop, integrate, and
conduct each size event. Estimates were made of the proportion of that event time that was spent
modifying applications to accommodate architectural differences (5%) and the proportion that
was spent developing, modifying, and troubleshooting gateways (10%). These result in the cost

Live-Virtual-Constructive Architecture Roadmap Implementation,
Convergence Final Report

Page 23

for activities that can be offset by implementing the convergence solutions. The return
calculation accommodated the fact that each incremental block would offset only a portion of
these costs, resulting in a partial return. For block A this was 10%; for blocks A and B it was
20%; for A, B, and C it was 40%; and for all four blocks, it was 80%. Thus we recognize that the
current costs of integration can never be completely offset by any convergence or gateway
solution.

The results of the ROI calculation are shown in Figure 14. With the estimates used, the benefits
are expected to offset the government costs in 5 years—before all functionality blocks are even
implemented. If the cost estimates are 100% low (or the benefits are only half of what has been
estimated), the breakeven point would occur in the sixth year.

Figure 14. Investments and Return for COA2

0

50

100

150

200

250

300

Year 1 Year 2 Year 3 Year 4 Year 5 Year 6 Year 7 Year 8 Year 9 Year 10

Cumulative Government Total FTE (Myears)

Cumulative Benefit [FTE reduction] (Myears)

Cum. Gov + Industry Total FTE (Myears)

Live-Virtual-Constructive Architecture Roadmap Implementation,
Convergence Final Report

Page 24

5. SUMMARY

The LVCAR-CT has established an independent view of the current architectures. The
next step is to determine what actions lead to convergence. The vision is that in 2015 new
versions of CTIA, DIS, HLA, and TENA will come out that will incorporate the results of the
Convergence Initiative. These new versions will continue to provide their users with services that
maintain the value of previous investments in LVC software applications. However, as a result of
collaboration between architecture engineering teams and limited additional changes, the new
versions can much more easily and effectively be used together.

The LVCAR-CT work does not stand alone. In particular, many preconditions, which are
being pursued as part of related tasks, are necessary to achieve this vision. The LVCAR-CT
assumes that the following efforts will be successfully accomplished on schedule and actively
collaborates with the teams involved to encourage such success:

1. The LVC systems engineering process defines common processes for distributed
simulation development, widely disseminates them, and enables work on process
overlays for multi-architecture events.

2. The JCOM produces an architecture-independent data-exchange model representation
compatible with all architectures.

3. The LVC common capabilities activity defines a reuse solution (registry, repository,
etc.) compatible with all the architectures.

4. The LVC bridges and gateways activity identifies mechanisms to convert between the
legacy versions of the architectures.

5. Management can effectively incentivize action by architecture proponents.

Building on these results, a convergence concept has been developed with agreement
from the SMEs of each of the legacy architectures. Activities have been documented that would
achieve convergence in line with this timeframe.

Live-Virtual-Constructive Architecture Roadmap Implementation,
Convergence Final Report
Appendix A: References

Page A-1

APPENDIX A: REFERENCES

Distributed Interactive Simulation Committee of the IEEE Computer Society, “IEEE Standard
for Distributed Interactive Simulation—Application Protocols,” IEEE Std 1278.1-1995,
1995.

Distributed Interactive Simulation Committee of the IEEE Computer Society, “IEEE Standard
for Distributed Interactive Simulation—Application Protocols,” IEEE Std 1278.1a-1998,
19 March 1998.

IEEE FEDEP Working Group, “Federation Development and Execution Process (FEDEP),”
IEEE Recommended Practice 1516.3-2000. R. R. Lutz, editor, April 2003.

Saunders, R., et al., “Legacy Architectures Reference Model,” Johns Hopkins University
Applied Physics Laboratory, November 2009.

Simulation Interoperability Standards Committee, “Standard for Modeling and Simulation High
Level Architecture—Federate Interface Specification,” IEEE Std IEEE 1516.1-2000.
HLA Working Group, 9 March 2001.

Simulation Interoperability Standards Committee, “Standard for Modeling and Simulation High
Level Architecture—Framework and Rules,” IEEE Std IEEE 1516-2000. HLA Working
Group, 11 December 2000.

Simulation Interoperability Standards Committee, “Standard for Modeling and Simulation High
Level Architecture—Object Model Template Specification,” IEEE Std IEEE 1516.2-
2000. HLA Working Group, 9 March 2001.

Live-Virtual-Constructive Architecture Roadmap Implementation,
Convergence Final Report

Appendix B: Abbreviations and Acronyms

Page B-1

 APPENDIX B: ABBREVIATONS AND ACRONYMS

ANDEM Architecture Neutral Data Exchange Model

API Application Programmer’s Interface

AWG Architecture Working Group

COA Course of Action

CORBA Common Object Request Broker Architecture

CSE Convergence Systems Engineering

CSI Common Simulation Infrastructure

CTIA Common Training Instrumentation Architecture

DDS Data Distribution Service

DEM Data Exchange Model

DIS Distributed Interactive Simulation

DoD Department of Defense

FEDEP Federation Development and Execution Process

FOM Federation Object Model

HLA High Level Architecture

IDL Interface Definition Language

IEEE Institute of Electrical and Electronics Engineers

JCOM Joint Composable Object Model

JFCOM Joint Forces Command

LT2 Live Training Transformation

LVC Live, Virtual, and Constructive

LVCAR Live-Virtual-Constructive Architecture Roadmap

LVCAR-CGB LVCAR Common Gateways and Bridges

LVCAR-CT LVCAR Convergence Team

MOM Management Object Model

OMG Object Management Group

PDU Protocol Data Unit

ROI Return on Investment

RTI Run-Time Infrastructure

SME Subject Matter Expert

Live-Virtual-Constructive Architecture Roadmap Implementation,
Convergence Final Report

Appendix B: Abbreviations and Acronyms

Page B-2

SOA Service-Oriented Architecture

SOM Simulation Object Model

TENA Test and Training Enabling Architecture

TSPI Time-Space-Position Information

UDEM Universal Data Exchange Model

U.S. United States

NATIONAL SECURITY ANALYSIS DEPARTMENT
THE JOHNS HOPKINS UNIVERSITY APPLIED PHYSICS LABORATORY

Johns Hopkins Road, Laurel, Maryland 20723‐6099

