

NATIONAL SECURITY ANALYSIS DEPARTMENT
THE JOHNS HOPKINS UNIVERSITY  APPLIED PHYSICS LABORATORY

Johns Hopkins Road, Laurel, Maryland 20723‐6099

Enclosure to: NSAD-L-2010-149
JNC04

NSAD-R-2010-044

GUIDE FOR MULTI-ARCHITECTURE
LIVE-VIRTUAL-CONSTRUCTIVE

ENVIRONMENT ENGINEERING AND
EXECUTION

JUNE 2010

NSAD-R-2010-044

Guide for Multi-Architecture
Live-Virtual-Constructive

Environment Engineering and Execution

June 2010

FOR:

Joint Training Integration and Evaluation Center
1200 Research Parkway, Suite 300
Orlando, FL 32826

BY:

Johns Hopkins University - Applied Physics Laboratory
11100 Johns Hopkins Road
Laurel, MD 20723

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

This page intentionally left blank.

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page i

TABLE OF CONTENTS

EXECUTIVE SUMMARY .. ES-1

1 INTRODUCTION ... 1-1

1.1 BACKGROUND ... 1-1
1.2 SCOPE ... 1-6
1.3 DOCUMENT OVERVIEW... 1-6
1.4 DEFINITIONS ... 1-7

2 MULTI-ARCHITECTURE ISSUES AND SOLUTIONS .. 2-1

2.1 STEP 1: DEFINE SIMULATION ENVIRONMENT OBJECTIVES 2-1
2.1.1 Activity 1.1: Identify User/Sponsor Needs ... 2-1
2.1.2 Activity 1.2: Develop Objectives .. 2-1
2.1.3 Activity 1.3: Conduct Initial Planning .. 2-1

2.2 STEP 2: PERFORM CONCEPTUAL ANALYSIS .. 2-4
2.2.1 Activity 2.1: Develop Scenario ... 2-4
2.2.2 Activity 2.2: Develop Conceptual Model ... 2-5
2.2.3 Activity 2.3: Develop Simulation Environment Requirements 2-5

2.3 STEP 3: DESIGN SIMULATION ENVIRONMENT .. 2-7
2.3.1 Activity 3.1: Select Member Applications .. 2-8
2.3.2 Activity 3.2: Design Simulation Environment .. 2-10
2.3.3 Activity 3.3: Design Member Applications .. 2-26
2.3.4 Activity 3.4: Prepare Detailed Plan .. 2-28

2.4 STEP 4: DEVELOP SIMULATION ENVIRONMENT ... 2-35
2.4.1 Activity 4.1: Develop Simulation Data Exchange Model 2-35
2.4.2 Activity 4.2: Establish Simulation Environment Agreements 2-40
2.4.3 Activity 4.3: Implement Member Application Designs .. 2-42
2.4.4 Activity 4.4: Implement Simulation Environment Infrastructure 2-43

2.5 STEP 5: INTEGRATE AND TEST SIMULATION ENVIRONMENT 2-46
2.5.1 Activity 5.1: Plan Execution ... 2-46
2.5.2 Activity 5.2: Integrate Simulation Environment ... 2-47
2.5.3 Activity 5.3: Test Simulation Environment .. 2-48

2.6 STEP 6: EXECUTE SIMULATION ... 2-51
2.6.1 Activity 6.1: Execute Simulation .. 2-51
2.6.2 Activity 6.2: Prepare Simulation Environment Outputs 2-52

2.7 STEP 7: ANALYZE DATA AND EVALUATE RESULTS .. 2-53
2.7.1 Activity 7.1: Analyze Data ... 2-53
2.7.2 Activity 7.2: Evaluate and Feedback Results ... 2-53

APPENDIX A. REFERENCES AND BIBLIOGRAPHY ... 1

APPENDIX B. MAPPING OF ISSUES TO EXISTING ARCHITECTURES 1

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page ii

APPENDIX C. ABBREVIATIONS AND ACRONYMS ... 1

LIST OF FIGURES

Figure 1-1. Gateway Configuration .. 1-2

Figure 1-2. Middleware Configuration ... 1-3

Figure 1-3. Distributed Simulation Engineering and Execution Process (DSEEP), Top-Level
Process Flow View .. 1-4

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page ES-1

EXECUTIVE SUMMARY

Robust, well-defined systems engineering (SE) processes are a key element of any
successful development project. In the distributed simulation community, there are several such
processes in wide use today, each aligned with a specific simulation architecture such as
Distributed Interactive Simulation (DIS), High Level Architecture (HLA), and Test and Training
Enabling Architecture (TENA). However, there are an increasing number of distributed
simulation applications within the Department of Defense (DoD) that require the selection of
simulations whose external interfaces are aligned with more than one simulation architecture.
This is what is known as a multi-architecture simulation environment.

Many technical issues arise when multi-architecture simulation environments are being
developed and executed. These issues tend to increase program costs and can increase technical
risk and impact schedules if not resolved adequately. The Live-Virtual-Constructive Architecture
Roadmap (LVCAR) was initiated in 2007 to define the differences among the major simulation
architectures from technical, business, and standards perspectives and to develop a time-phased
set of actions to improve interoperability within multi-architecture simulation environments in
the future.

One of the barriers to interoperability identified in the LVCAR Phase I Report was driven
by a community-wide recognition that when user communities, aligned with the different
simulation architectures, are brought together to develop a multi-architecture distributed
simulation environment, the differences in the development processes native to each user
community adversely affected the ability to collaborate effectively. To address this problem, a
recommendation was made to establish a common cross-community SE process for the
development and execution of multi-architecture simulation environments. However, rather than
develop an entirely new process, it was recognized that an existing process standard should be
leveraged and extended to address multi-architecture concerns. The process framework that was
chosen is an emerging Institute of Electrical and Electronics Engineers (IEEE) standard called
the Distributed Simulation Engineering and Execution Process (DSEEP). The DSEEP tailors
widely recognized and accepted SE practices to the modeling and simulation domain and, more
specifically, to the development and execution of distributed simulation environments. The
strategy implemented in this case was to augment the major DSEEP steps and activities with the
additional tasks that are needed to address the issues that are unique to (or at least exacerbated
by) multi-architecture development. These tasks collectively define a “how to” guide for
developing and executing multi-architecture simulation environments, based on recognized best
practices.

This document defines a total of 40 multi-architecture related issues, based on an
extensive literature search. Each of these issues is aligned with the activity in the DSEEP for
which the issue first becomes relevant. Each issue comes with both a description and a

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page ES-2

recommended action(s) to best address the issue. A set of inputs, outcomes, and recommended
tasks is also provided for each DSEEP activity to address the resolution of the multi-architecture
issues. This information is provided as an overlay to corresponding information already provided
in the DSEEP document for single-architecture development.

An appendix to this document identifies a tailoring of the guidance provided in the main
document to individual architecture communities. For each of three major simulation
architectures, a mapping is provided to indicate the relevance of each Issue–Recommended
Action pair to developers and users of that simulation architecture. Together with the guidance
provided in the main text, it is believed that this document will provide the guidance needed to
improve cross-community collaboration and thus reduce costs and technical risk in future multi-
architecture developments.

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 1-1

1 INTRODUCTION

1.1 BACKGROUND

Modeling and simulation (M&S) has long been recognized as a critical technology for
managing the complexity associated with modern systems. In the defense industry, M&S is a key
enabler of many core systems engineering functions. For instance, early in the systems
acquisition process, relatively coarse, aggregate-level constructive models are generally used to
identify capability gaps, define systems requirements, and examine/compare potential system
solutions. As preferred concepts are identified, higher-fidelity models are used to evaluate
alternative system designs and to support initial system development activities. As design and
development continues, very high-fidelity models are used to support component-level design
and development, as well as developmental test. Finally, combinations of virtual and
constructive M&S assets are frequently used to support operational test and training
requirements. Note that other industries (e.g., entertainment, medical, transportation) also make
heavy use of M&S, although in somewhat different ways.

The advent of modern networking technology and the development of supporting
protocols and architectures have led to widespread use of distributed simulation. The strategy
behind distributed simulation is to use networks and support simulation services to link existing
M&S assets into a single unified simulation environment. This approach provides several
advantages as compared to development and maintenance of large monolithic stand-alone
simulation systems. First, it allows each individual simulation application to be co-located with
its resident subject matter expertise rather than having to develop and maintain a large stand-
alone system in one location. In addition, it facilitates efficient use of past M&S investments, as
new, very powerful simulation environments can be quickly configured from existing M&S
assets. Finally, it provides flexible mechanisms to integrate hardware and/or live assets into a
unified environment for test or training, and it is much more scalable than stand-alone systems.

There are also some disadvantages of distributed simulation. Many of the issues related to
distributed simulation are related to interoperability concerns. Interoperability refers to the
ability of disparate simulation systems and supporting utilities (e.g., viewers, loggers) to interact
at runtime in a coherent fashion. There are many technical issues that affect interoperability, such
as consistency of time advancement mechanisms, compatibility of supported services, data
format compatibility, and even semantic mismatches for runtime data elements. The capabilities
provided by today’s distributed simulation architectures are designed to address such issues and
allow coordinated runtime interaction among participating simulations. Examples of such
architectures include Distributed Interactive Simulation (DIS), the Test and Training Enabling
Architecture (TENA), and the High Level Architecture (HLA).

In some situations, sponsor requirements may necessitate the selection of simulations
whose external interfaces are aligned with more than one simulation architecture. This is what is

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 1-2

known as a multi-architecture simulation environment. There are many examples of such
environments within the Department of Defense (DoD) (see references for examples). When
more than one simulation architecture must be used in the same environment, interoperability
problems are compounded by the architectural differences. For instance, middleware
incompatibilities, dissimilar metamodels for data exchange, and differences in the nature of the
services that are provided by the architectures must all be reconciled for such environments to
operate properly. Developers have devised many different workarounds for these types of
interoperability problems over the years. One possible solution is to choose a single architecture
for the simulation environment and require all participants to modify the native interfaces of their
simulations to conform to it. While this solution is relatively straightforward and easy to test, it is
usually impractical (particularly in large applications) because of the high cost and schedule
penalties incurred. Another approach is the use of gateways, which are independent software
applications that translate between the protocols used by one simulation architecture to that of a
different simulation architecture (see Figure 1-1). While effective, gateways represent another
potential source of error (or failure) within the simulation environment, can introduce
undesirable latencies into the system, and add to the complexity of simulation environment
testing. In addition, many gateways are legacy point solutions that provide support only for a
very limited number of services and only for very specific versions of the supported simulation
architectures. Thus, it may be difficult to find a suitable gateway that fully supports the needs of
a given application. For the relatively small number of general-purpose gateways that are
configurable, the effort required to perform the configuration function can be significant and can
result in excessive consumption of project resources.

Figure 1-1. Gateway Configuration

Sim1
DIS Interface

Sim1
DIS Interface

Sim2
DIS Interface

Sim2
DIS Interface

SimY
DIS Interface

SimY
DIS Interface

DIS Enclave

Sim1
HLA Interface

Sim2
HLA Interface

SimX
HLA Interface

HLA Enclave

Sim1
HLA Interface

Sim1
HLA Interface

Sim2
HLA Interface

Sim2
HLA Interface

SimX
HLA Interface

SimX
HLA Interface

HLA Enclave

Sim1
TENA Interface

Sim2
TENA Interface

SimZ
TENA Interface

TENA Enclave

Sim1
TENA Interface

Sim1
TENA Interface

Sim2Sim2
TENA Interface

SimZ
TENA Interface

SimZ
TENA Interface

TENA Enclave

Gateway Gateway Gateway

Network

Sim1
DIS Interface

Sim1
DIS Interface

Sim2
DIS Interface

Sim2
DIS Interface

SimY
DIS Interface

SimY
DIS Interface

DIS Enclave

Sim1
HLA Interface

Sim2
HLA Interface

SimX
HLA Interface

HLA Enclave

Sim1
HLA Interface

Sim1
HLA Interface

Sim2
HLA Interface

Sim2
HLA Interface

SimX
HLA Interface

SimX
HLA Interface

HLA Enclave

Sim1
TENA Interface

Sim2
TENA Interface

SimZ
TENA Interface

TENA Enclave

Sim1
TENA Interface

Sim1
TENA Interface

Sim2Sim2
TENA Interface

SimZ
TENA Interface

SimZ
TENA Interface

TENA Enclave

Gateway Gateway Gateway

Network

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 1-3

The use of middleware is a similar approach but provides the translation services in
software directly coupled to the simulation instead of an independent application1 (see Figure 1-
2). While middleware approaches are also effective, they introduce many of the same technical
issues that are associated with gateways (e.g., source of error, possible latency penalties). In
general, all of these “solutions” have limitations and cost implications that increase technical,
cost, and schedule risk for multi-architecture developments.

Figure 1-2. Middleware Configuration

Because of perceived increases in the number of multi-architecture simulation events
anticipated in the future, along with the associated increase in costs, the DoD sponsored an
initiative to examine the differences among the major simulation architectures from technical,
business, and standards perspectives and to develop a time-phased set of actions to improve
interoperability within multi-architecture simulation environments in the future. This initiative
was called the Live-Virtual-Constructive Architecture Roadmap (LVCAR). The first phase of
this effort began in the spring of 2007 and continued for approximately 16 months. The result of
this activity was a final report and supporting documentation that collectively totaled over 1000
pages. The second phase of this initiative focused on the implementation of the recommended
actions from this report.

A key conclusion of the LVCAR effort was that migrating to a single distributed
simulation architecture was impractical, and thus multi-architecture simulation environments
would remain the state of the practice for the foreseeable future. One of the key actions
recommended in the LVCAR Phase I Report was the establishment of a common systems
engineering process for the development and execution of multi-architecture simulation
environments. The widely reported issue in this case was that when user communities of
different architectures were brought together to develop a single multi-architecture distributed
simulation environment, the differences in the development processes native to each user
community were creating a persistent barrier to effective collaboration. That is, since these

1 Note that this use of the term “middleware” is different in some user communities, who may use this term to refer
to the infrastructure elements that provide distributed simulation services (e.g., the HLA Runtime Infrastructure
[RTI]).

Network

MiddlewareMiddlewareMiddleware

Sim1 Sim2 SimY

DIS Enclave

MiddlewareMiddlewareMiddleware

Sim1 Sim2 SimY

DIS Enclave

MiddlewareMiddlewareMiddleware

Sim1 Sim2 SimX

HLA Enclave

MiddlewareMiddlewareMiddlewareMiddlewareMiddlewareMiddleware

Sim1 Sim2 SimX

HLA Enclave

Middleware

Sim1
Middleware

Sim2
Middleware

SimZ

TENA Enclave

Middleware

Sim1
Middleware

Sim1
Middleware

Sim2
Middleware

Sim2
Middleware

SimZ
Middleware

SimZ

TENA Enclave

Network

MiddlewareMiddlewareMiddleware

Sim1 Sim2 SimY

DIS Enclave

MiddlewareMiddlewareMiddleware

Sim1 Sim2 SimY

DIS Enclave

MiddlewareMiddlewareMiddleware

Sim1 Sim2 SimX

HLA Enclave

MiddlewareMiddlewareMiddlewareMiddlewareMiddlewareMiddleware

Sim1 Sim2 SimX

HLA Enclave

Middleware

Sim1
Middleware

Sim2
Middleware

SimZ

TENA Enclave

Middleware

Sim1
Middleware

Sim1
Middleware

Sim2
Middleware

Sim2
Middleware

SimZ
Middleware

SimZ

TENA Enclave

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 1-4

communities had to work together toward common goals, differences in the practices and
procedures these communities typically use to build new simulation environments were leading
to misunderstandings, misinterpretations, and general confusion among team members. This was
impacting risk from many different perspectives.

To develop the common systems engineering process, it was felt that leveraging and
modifying/extending an existing systems engineering process standard was preferable to building
an entirely new process description from scratch. Early in the project, the systems engineering
process team considered several generalized and widely recognized systems and software
standards (e.g., EIA-632, ISO/IEC 15288). However, the team decided that direct reuse of any
process standard outside of the M&S domain would require a significant degree of tailoring,
consuming resources that could be better applied in other ways. For that reason, the team
selected an emerging Institute of Electrical and Electronics Engineers (IEEE) standard (IEEE
1730) as the foundation for the desired process. The name of this standard is the Distributed
Simulation Engineering and Execution Process (DSEEP).

The DSEEP represents a tailoring of best practices in the systems and software
engineering communities to the M&S domain. The DSEEP is simulation architecture-neutral, but
it does contain annexes that map this architecture-neutral view to DIS, HLA, and TENA
terminology. A top-level view of the DSEEP is provided in Figure 1-3.

Corrective Actions / Iterative Development

65431

Perform
Conceptual

Analysis

2

Analyze
Data and
Evaluate
Results

7

Define
Simulation

Environment
Objectives

Design
Simulation

Environment

Develop
Simulation

Environment

Integrate
and Test

Simulation
Environment

Execute
Simulation

Figure 1-3. Distributed Simulation Engineering and Execution Process (DSEEP), Top-
Level Process Flow View

A short description of each of these seven major steps follows:

Step 1: Define Simulation Environment Objectives. The user, the sponsor, and the
development/integration team define and agree on a set of objectives and document what must be
accomplished to achieve those objectives.

Step 2: Perform Conceptual Analysis. The development team performs scenario
development and conceptual modeling and develops the simulation environment requirements
based upon the characteristics of the problem space.

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 1-5

Step 3: Design Simulation Environment. Existing member applications that are suitable
for reuse are identified, design activities for member application modifications and/or new
member applications are performed, required functionalities are allocated to the member
applications, and a plan is developed for development and implementation of the simulation
environment.

Step 4: Develop Simulation Environment. The simulation data exchange model is
developed, simulation environment agreements are established, and new member applications
and/or modifications to existing member applications are implemented.

Step 5: Integrate and Test Simulation Environment. All necessary integration activities
are performed, and testing is conducted to verify that interoperability requirements are being
met.

Step 6: Execute Simulation. The simulation environment is executed and the output data
from the execution is pre-processed.

Step 7: Analyze Data and Evaluate Results. The output data from the execution is
analyzed and evaluated, and results are reported back to the user/sponsor.

In the DSEEP document, each of these seven steps is further decomposed into a set of
interrelated lower-level activities. Each activity is characterized according to a set of required
activity inputs, one or more output products, and a list of recommended finer-grain tasks.
Although these activity descriptions are identified in a logical sequence, the DSEEP emphasizes
that iteration and concurrency are to be expected, not only across activities within a step but
across steps as well.

Although the DSEEP provides the guidance required to build and execute a distributed
simulation environment, the implicit assumption within the DSEEP is that only a single
simulation architecture is being used. The only acknowledgement that this assumption may be
false is provided in the following paragraph from DSEEP Activity 3.2 (Design Simulation
Environment):

In some large simulation environments, it is sometimes necessary to mix several
simulation architectures. This poses special challenges to the simulation environment design, as
sophisticated mechanisms are sometimes needed to reconcile disparities in the architecture
interfaces. For instance, gateways or bridges to adjudicate between different on-the-wire
protocols are generally a required element in the overall design, as well as mechanisms to
address differences in simulation data exchange models. Such mechanisms are normally
formalized as part of the member application agreements, which are discussed in Step 4.

Clearly, additional guidance is necessary to support the development of multi-
architecture simulation environments. However, the major steps and activities defined in the
DSEEP are generally applicable to either single- or multi-architecture development. Thus, the

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 1-6

DSEEP provides a viable framework for the development of the desired process, but it must be
augmented with additional tasks as necessary to address the issues that are unique to (or at least
exacerbated by) multi-architecture development. Such augmenting documentation is often
referred to as an overlay. The tasks in this overlay collectively define a “how to” guide for
developing and executing multi-architecture simulation environments, based on perceived best
practices for issue resolution.

The remainder of this first section describes the organization of and the associated
constraints upon the overlay specification. This is critical to understanding the technical
description of the overlay as described in Section 0.

1.2 SCOPE

This document is intended for users and developers of multi-architecture simulation
environments. It describes a comprehensive set of technical issues that are either unique to multi-
architecture development or are more difficult to resolve in multi-architecture simulation
environments. The solution(s) provided for each issue are focused on multi-architecture
developments but may have applicability to single-architecture development as well.

This document is intended as a companion guide to the DSEEP. The simulation
environment user/developer should assume that the guidance provided by the DSEEP is
applicable to both single- and multi-architecture developments but that this document provides
the additional guidance needed to address the special concerns of this class of the multi-
architecture user/developer.

1.3 DOCUMENT OVERVIEW

This document is organized as an overlay to the DSEEP. Each subsection begins with a
short description of the DSEEP activity. Next, the multi-architecture technical issue(s) that are
relevant to that DSEEP activity are listed and described.2 After the statement of each issue, the
recommended action(s) to address that issue are presented. Finally, the recommended action(s)
for the issue are translated into an appropriate set of inputs, outcomes, and recommended tasks to
augment corresponding DSEEP inputs/outcomes/tasks for that activity. This structure is repeated
for all of the activities defined in the DSEEP document.

Note that some DSEEP activities do not have any technical issues associated with them.
This indicates that the existing DSEEP activity description applies equally well to either single-
or multi-architecture environments and that there are no additional multi-architecture-specific

2 Some issues impact multiple DSEEP activities. Rather than repeating the issue multiple times, it is elaborated at
the first affected activity.

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 1-7

inputs, outcomes, or recommended tasks for that activity. This situation mainly occurs either
early or late in the overall process.

1.4 DEFINITIONS

Conceptual Model: An abstraction of what is intended to be represented within a simulation
environment, which serves as a frame of reference for communicating simulation-neutral views
of important entities and their key actions and interactions. The conceptual model describes what
the simulation environment will represent, the assumptions limiting those representations, and
other capabilities needed to satisfy the user’s requirements. Conceptual models are bridges
between the real world, requirements, and simulation design.

Member Application: An application that is serving some defined role within a simulation
environment. This can include live, virtual, or constructive (LVC) simulation assets or can be
supporting utility programs such as data loggers or visualization tools.

Objective: The desired goals and results of the activity to be conducted in the distributed
simulation environment expressed in terms relevant to the organization(s) involved.

Requirement: A statement identifying an unambiguous and testable characteristic, constraint,
process, or product of an intended simulation environment.

Simulation Environment: A named set of member applications along with a common
simulation data exchange model and set of agreements that are used as a whole to achieve some
specific objective.

Live Simulation: A simulation involving real people operating real systems.

Virtual Simulation: A simulation involving real people operating simulated systems. Virtual
simulations inject human-in-the-loop (HITL) in a central role by exercising motor control skills
(e.g., flying an airplane), decision skills (e.g., committing fire control resources to action), or
communication skills (e.g., as members of a command, control, communications, computers, and
intelligence [C4I] team).

Constructive Simulation: Models and simulations that involve simulated people operating
simulated systems. Real people stimulate (make inputs) to such simulations but are not involved
in determining the outcomes.

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 1-8

This page intentionally left blank.

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 2-1

2 MULTI-ARCHITECTURE ISSUES AND SOLUTIONS

2.1 STEP 1: DEFINE SIMULATION ENVIRONMENT OBJECTIVES

The purpose of Step 1 of the DSEEP is to define and document a set of needs that are to
be addressed through the development and execution of a simulation environment and to
transform these needs into a more detailed list of specific objectives for that environment.

2.1.1 Activity 1.1: Identify User/Sponsor Needs

The primary purpose of this activity is to develop a clear understanding of the problem to
be addressed by the simulation environment. The needs statement may vary widely in terms of
scope and degree of formalization. It should include, at a minimum, high-level descriptions of
critical systems of interest, initial estimates of required fidelity and required behaviors for
simulated entities, key events and environmental conditions that must be represented in the
scenario, and output data requirements. In addition, the needs statement should indicate the
resources that will be available to support the simulation environment (e.g., funding, personnel,
tools, facilities) and any known constraints that may affect how the simulation environment is
developed (e.g., required member applications, due dates, site requirements, and security
requirements).

2.1.1.1 Issues

No multi-architecture issues have been identified for this activity.

2.1.2 Activity 1.2: Develop Objectives

The purpose of this activity is to refine the needs statement into a more detailed set of
specific objectives for the simulation environment. The objectives statement is intended as a
foundation for generating explicit simulation requirements, i.e., translating high-level
user/sponsor expectations into more concrete, measurable goals. This activity requires close
collaboration between the user/sponsor of the simulation environment and the development team
to verify that the original needs statement is properly analyzed and interpreted and that the
resulting objectives are consistent with the stated needs. Early assessments of feasibility and risk
should also be performed as part of this activity.

2.1.2.1 Issues

No multi-architecture issues have been identified for this activity.

2.1.3 Activity 1.3: Conduct Initial Planning

The purpose of this activity is to establish a preliminary simulation environment
development and execution plan. The intent is to translate the objectives statement, along with

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 2-2

the associated risk and feasibility assessments, into an initial plan with sufficient detail to
effectively guide early design activities. The plan may effectively include multiple plans and
should cover such considerations as verification and validation (V&V), configuration
management, and security. The plan should also address supporting tools for early DSEEP
activities, based on factors such as availability, cost, applicability to the given application, ability
to exchange data with other tools, and the personal preferences of the development team.

2.1.3.1 Issues

2.1.3.1.1 Issue: Multi-architecture Initial Planning

DESCRIPTION

During initial planning, work breakdown structures are typically developed that define
the required project tasks and the overall project schedule and that estimate funding expenditure
rates. However, the identity of several participating member applications may be unknown this
early in the process, and thus the requirement for a multi-architecture simulation environment
design may be unknown. In the absence of better information, project managers frequently just
assume single-architecture operation, which underestimates the time and resources necessary to
establish the simulation environment. This increases project risk from several perspectives.

RECOMMENDED ACTION(S)

The scope of the distributed simulation environment effort should be established. The
questions of what needs to be done and who needs to participate should be identified early in the
development process. Although such considerations can be added during later development
phases, omissions made during planning may increase the technical and schedule risk of the
simulation development. In general, planners should use their best judgment as to what will be
needed, based on the information available to them. If the initial plan assumes that the simulation
environment development will be single-architecture, the sponsor should be made aware very
early of the potential for significant rework of the plan and the potential need for additional
resources if the assumption is later found to be false. If the initial plan assumes that the
simulation environment development will be multi-architecture, the relatively high level of
resources required should be communicated very early to the sponsor. In that way, certain
objectives can be relaxed as appropriate if resource demands are considered overly excessive.
Another system development approach may be to plan for two simulation environments, one
implemented as a single-architecture simulation environment and a second implemented as a
multi-architecture simulation environment. Multi-architecture systems are complex
developments and have technical, financial, schedule, and programmatic issues that should
preclude their use unless absolutely necessary to satisfy user/sponsor requirements. Sufficiently
analyzing the benefits, feasibility, limitations, constraints, trade-offs, and risks of multi-

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 2-3

architecture engineering issues improves successful planning of a multi-architecture system. If
the initial planning documents fail to reflect the additional developmental considerations
required by a multi-architecture system, then the result will be major omissions in terms of what
will eventually need to be integrated into a multi-architecture environment, both with respect to
actual applications (e.g., gateways) and overarching requirements in the areas of performance,
execution management, networking, and required complementary development activities (e.g.
security and verification, validation, and accreditation [VV&A]).

2.1.3.1.2 Issue: Required LVC Expertise

DESCRIPTION

In the event that the user/sponsor requires the use of certain member applications, and
those member applications have existing interfaces that cut across more than one architecture,
lack of personnel experienced in the development of multi-architecture LVC environments on
the initial development team may result in unachievable cost and/or schedule objectives, which
will adversely affect the planning process.

RECOMMENDED ACTION(S)

Resolving the issue of having the required LVC expertise to successfully execute an
effort where a multi-architecture environment is required typically takes one of two paths:
adding the appropriate experienced personnel to the team permanently or adding them
temporarily. Both approaches are valid, and the specific situation should dictate the action taken.

Temporarily adding multi-architecture LVC expertise is typically done by using a
consultant or team of consultants. While the term “consultant” can have a negative connotation,
here it refers to a person temporarily added to a team in order to provide the necessary guidance
and oversight to allow successful execution of the required activity. This added expertise can
come from inside or from outside the current company or program. Certainly, there are
programmatic trade-offs associated with both approaches. The goal of outside “consultants”
should be to render themselves obsolete while ensuring that the management goals for multi-
architecture execution are met. For example, the TENA community provides a User Support
team for simulation events using TENA. The goal of the TENA User Support team is to provide
assistance as necessary to integrate TENA into the simulation environment; such assistance runs
the gamut from software development/coding support to network configuration.

The addition of permanent team members experienced in multi-architecture LVC
environments can have substantial long-term impact on the ability of a team to execute multi-
architecture LVC events. When managed correctly, the new permanent team member(s) can have
a significant positive impact on the long-term development and execution efforts of the team.

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 2-4

Both of the above approaches are valid even when multi-architecture expertise exists on a
team but specific architecture expertise is missing. For example, experience exists in HLA
to/from DIS multi-architecture environments, but the requirement is for HLA to/from TENA and
no TENA expertise exists on the team. In this case the addition of expertise is constrained to the
unfamiliar architecture.

2.1.3.2 Consolidation of “Conduct Initial Planning” Activities to Support Multi-architecture
Events

MULTI-ARCHITECTURE-SPECIFIC ACTIVITY INPUTS

 Personnel with experience in multi-architecture environment

MULTI-ARCHITECTURE-SPECIFIC TASKS

 Plan for single- and multi-architecture environments alternatives.

 Select approach for adding personnel with multi-architecture experience—either
through temporary or permanent staff augmentation.

MULTI-ARCHITECTURE-SPECIFIC ACTIVITY OUTCOMES

 Within “Simulation environment development and execution plan” (per the DSEEP)

o Staffing plan to account for multi-architecture concerns

o Contingency plans for single- or multi-architecture environments

2.2 STEP 2: PERFORM CONCEPTUAL ANALYSIS

The purpose of this step of the DSEEP is to develop an appropriate representation of the
real-world domain that applies to the defined problem space and to develop the appropriate
scenario. It is also in this step that the objectives for the simulation environment are transformed
into a set of highly specific requirements that will be used during design, development, testing,
execution, and evaluation.

2.2.1 Activity 2.1: Develop Scenario

The purpose of this activity is to develop a functional specification for the scenario.
Depending on the needs of the simulation environment, the scenario may actually include
multiple scenarios, each consisting of one or more temporally ordered sets of events and
behaviors (i.e., vignettes). A scenario includes the types and numbers of major entities that must
be represented within the simulation environment; a functional description of the capabilities,
behavior, and relationships between these major entities over time; and a specification of
relevant environmental conditions that impact or are impacted by entities in the simulation

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 2-5

environment. Initial conditions (e.g., geographical positions for physical objects), termination
conditions, and specific geographic regions should also be provided.

2.2.1.1 Issues

No multi-architecture issues have been identified for this activity.

2.2.2 Activity 2.2: Develop Conceptual Model

During this activity, the development team produces a conceptual representation of the
intended problem space based on their interpretation of user needs and sponsor objectives. The
product resulting from this activity is known as a conceptual model. The conceptual model
provides an implementation-independent representation that serves as a vehicle for transforming
objectives into functional and behavioral descriptions for system and software designers. The
model also provides a crucial traceability link between the stated objectives and the eventual
design implementation.

2.2.2.1 Issues

No multi-architecture issues have been identified for this activity.

2.2.3 Activity 2.3: Develop Simulation Environment Requirements

As the conceptual model is developed, it will lead to the definition of a set of detailed
requirements for the simulation environment. These requirements should be directly testable and
should provide the implementation-level guidance needed to design and develop the simulation
environment. The requirements should consider the specific execution management needs of all
users, such as execution control and monitoring mechanisms, and data logging.

2.2.3.1 Issues

2.2.3.1.1 Issue: Requirements for Multi-architecture Development

DESCRIPTION

The initial LVC environment requirements can be derived from several sources,
including the customer Use Cases, Joint Capability Areas (JCAs), Mission Threads, Universal
Joint Task List (UJTL), and other operationally representative sources. During this requirement
definition phase, the LVC environment design has typically not been completely determined and
therefore potential multi-architecture design, development, integration, test, and execution
requirements may be unknown. The selection of some specific simulations may, however, be
directed by the sponsor and would require a multi-architecture environment as a result.

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 2-6

RECOMMENDED ACTION(S)

Three potential situations exist as a result of this issue. The first case is if this is the initial
iteration through the development process and there is no simulation selection directed by the
sponsor. In this situation, no multi-architecture requirements are noted; this could change,
however, on subsequent iterations. The second case is if this is the first iteration and simulation
selection is directed by the sponsor; this situation could result in a multi-architecture
requirement. The third case is if this is a subsequent iteration though the process and a multi-
architecture requirement has been determined.

The recommended action is the same for both the second and third cases. The data and
interface requirements for the multi-architecture applications should be noted at this time. In
order to create a testable set of requirements across architectures, the team should document the
individual application and architecture requirements as necessary for the given simulation
environment. The goal at this phase is to start the process of exposing the differences between
architectures and to begin to understand the key differences that should be accounted for in order
to successfully operate across the architectures and test the requirements.

2.2.3.1.2 Issue: Member Application Requirement Incompatibility

DESCRIPTION

By virtue of their fundamental design intent and implementation assumptions, different
distributed simulation architectures are generally better suited for satisfying certain application
requirements than they are for others. Member applications developed for different architectures
often conform to and exhibit the design intent and assumptions of those architectures. However,
incompatibilities in requirements may be introduced into the simulation environments as a result
of inherent architectural differences between member applications from different architectures.
These potential requirement incompatibilities should be considered during member application
selection. The most important aspect of this issue is to note that there is a strong potential for
requirement incompatibility as a result of using a multi-architecture environment.

RECOMMENDED ACTION(S)

The goal is to understand the differences and to start addressing the technical
incompatibilities at this early stage of the process.

Understanding the technical incompatibilities introduced by the incompatibilities in
requirements can manifest itself in many ways. For example, by virtue of DIS’s exploitation of
specific network services and its protocol-embedded simulation data exchange model (SDEM),
member applications developed for DIS are typically well suited for requirements related to
virtual entity-level real-time training applications. However, a requirement for repeatability is
potentially problematic for a DIS member application because of the architecture’s

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 2-7

unconstrained time, best effort (User Datagram Protocol [UDP] Packets over Internet Protocol
[IP] [UDP/IP]) networking, and typical model sensitivity to slight differences in Protocol Data
Unit (PDU) arrival time. For another example, TENA focuses on disparate live and virtual range
member applications. Thus, member applications designed for TENA typically have difficulty
supporting a non-real-time unit-level constructive simulation. Therefore, when member
applications developed for different architectures are linked into a single multi-architecture
simulation environment, some of the requirements for the multi-architecture simulation
environment may be incompatible with the requirements that any particular member application
can readily support.

The technical incompatibilities introduced by a multi-architecture environment are not
always reconcilable. When this is the case, seeking a relaxation of the requirement (i.e.,
mandated use of given member applications) is advisable. For example, a trade-off may need to
be made between a relaxation of the requirements and true repeatability of the simulation
environment based on the known incompatibilities. While this is not always possible, exposing
the technical risks at this point will at least allow risk mitigation to begin as early as possible.

2.2.3.2 Consolidation of “Develop Environment Requirements” Activities to Support Multi-
architecture Events

MULTI-ARCHITECTURE-SPECIFIC ACTIVITY INPUTS

 None beyond those called for in the DSEEP

MULTI-ARCHITECTURE-SPECIFIC TASKS

 Define data and interface requirements for multi-architecture applications.

 Identify technical incompatibilities and risks specific to multi-architecture
applications.

MULTI-ARCHITECTURE-SPECIFIC ACTIVITY OUTCOMES

 None beyond those called for in the DSEEP

2.3 STEP 3: DESIGN SIMULATION ENVIRONMENT

The purpose of this step of the DSEEP is to produce the design of the simulation
environment. This involves identifying applications that will assume some defined role in the
simulation environment (member applications) that are suitable for reuse, creating new member
applications if required, allocating the required functionality to the member applications, and
developing a detailed simulation environment development and execution plan.

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 2-8

2.3.1 Activity 3.1: Select Member Applications

The purpose of this activity is to determine the suitability of individual simulation
systems to become member applications of the simulation environment. This is normally driven
by the perceived ability of potential member applications to represent entities and events
according to the conceptual model. Managerial constraints (e.g., availability, security, facilities)
and technical constraints (e.g., VV&A status, portability) may both influence the selection of
member applications.

2.3.1.1 Issues

2.3.1.1.1 Issue: Member Selection Criteria for Multi-architecture Applications

DESCRIPTION

The selection of member applications for multi-architecture environments requires
additional criteria beyond those used for member application selection decisions in single-
architecture environments. Some potential member applications of a multi-architecture
environment may support only one of the architectures being employed while other potential
member applications support all the architectures being employed. The selection decision
becomes more complex for the system designers because the architecture support capabilities of
a potential member application will need to be considered in addition to its simulation
representational capabilities. A trade-off may become necessary between a highly capable
member application that supports a single architecture and another less capable member
application that supports multiple architectures. Such trade-offs are an important part of the
selection process, and ignoring such considerations may result in schedule slippages and
unanticipated technical problems.

RECOMMENDED ACTION(S)

The simulation architecture(s) that individual member applications support is perhaps the
most obvious additional criterion to consider in selecting member applications for a multi-
architecture simulation environment. All else being equal, maximizing the number of member
applications using the same architecture reduces integration effort and overall technical risk [e.g.,
Blacklock and Zalcman, 1997]. The benefit of integrating a member application into a multi-
architecture environment should be evaluated with respect to the effort required for the
integration.

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 2-9

2.3.1.1.2 Issue: Non-conforming Interfaces

DESCRIPTION

It is possible that some member applications may have external interfaces that do not
conform to any of the standard simulation architectures. Simulation applications that interface
through alternative simulation architectures (e.g., OpenMSA, a parallel and distributed event
processing simulation software framework [Lammers et al., 2008; Lammers et al., 2009]) or with
other applications through web services may have high value to the goals of the simulation
environment, but the solution as to how to integrate the application may require extensive
engineering. Alternatively, a command and control (C2) system could be an example of such a
member application. C2 systems typically exchange information through different mechanisms
from those used by most simulation architectures. Linking C2 systems into a simulation
environment requires that these different exchange mechanisms and underlying data models be
reconciled, which can be very resource intensive and subject to runtime error.

RECOMMENDED ACTION(S)

A business case needs to justify the integration of an application with a non-conforming
interface. The perceived value of that particular application needs to be evaluated against the
time/effort required to perform necessary integration and test activities. If the integration of the
application is justified, then the next decision is to select the architecture the potential member
application will support. The technical characteristics of the member application’s interface
should be compared with the different architectures in use within the simulation environment to
determine which simulation architecture should be used as the basis for that member
application’s interface.

2.3.1.2 Consolidation of “Select Member Applications” Activities to Support Multi-
architecture Events

MULTI-ARCHITECTURE-SPECIFIC ACTIVITY INPUTS

 Potential member applications capable of supporting various architectures

MULTI-ARCHITECTURE-SPECIFIC TASKS

 Perform trade-off analysis so as to meet simulation environment requirements while
maximizing the number of member applications using the same architecture.

 Select an architecture for selected member applications that currently have non-
conforming interfaces.

MULTI-ARCHITECTURE-SPECIFIC ACTIVITY OUTCOMES

 List of architectures supported by the selected member applications

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 2-10

2.3.2 Activity 3.2: Design Simulation Environment

Once all member applications have been identified, the next major activity is to prepare
the simulation environment design and allocate the responsibility to represent the entities and
actions in the conceptual model to the member applications. This activity will allow an
assessment of whether the set of selected member applications provides the full set of required
functionality. A by-product of the allocation of functionality to the member applications will be
additional design information that can embellish the conceptual model.

2.3.2.1 Issues

2.3.2.1.1 Issue: Object State Update Contents

DESCRIPTION

Some distributed simulation architectures (e.g., DIS) require updates of a simulated
object’s state to include a complete set of the object’s state attributes. Other architectures (e.g.,
HLA) do not require object state updates to include attributes that have not changed. A multi-
architecture simulation environment combining these two paradigms must resolve the difference.

RECOMMENDED ACTION(S)

The designer should ensure that the mechanisms used to link architectures with different
state update requirements automatically produce updates that are compliant with the expectations
of the receiving member applications. For example, DIS–HLA gateways typically perform these
functions by maintaining a complete set of attributes for each simulated object [Cox et al., 1996;
Wood et al., 1997; Wood and Petty, 1999]. When an HLA object attribute update for some object
is received by the gateway, the gateway’s internal attributes for the object are updated and then a
complete DIS Entity State PDU is produced from the gateway’s internal attributes for the object
and sent. When a DIS Entity State PDU for some object is received by the gateway, the object
attributes in the incoming PDU are compared to the gateway’s internal attributes for the object;
those that are different are updated in the gateway’s internal set from the PDU and also sent via
an HLA object attribute update service invocation. The gateway’s internal attributes for an object
are initialized the first time the gateway receives an update for those attributes from either side.

2.3.2.1.2 Issue: Object Ownership Management

DESCRIPTION

Some distributed simulation architectures allow the transfer of responsibility for updating
object attribute values from one member application to another during execution, effectively
allowing the transfer of responsibility for simulating that object (or aspects of it). Some other

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 2-11

architectures do not provide comparable capabilities. A multi-architecture simulation
environment combining these two paradigms must resolve the difference.

RECOMMENDED ACTION(S)

 At least two resolutions for this issue are possible. First, when choosing member
applications for inclusion in a multi-architecture simulation environment, select for inclusion all
of the member applications that transfer object ownership between one another as a set. By doing
so, those member applications can continue to perform object ownership transfer between
themselves as before. Second, if it is not possible to include the entire set, then modify member
applications that are not able to transfer object ownership to do so by adding ownership transfer
capabilities to them, and/or modify member applications able to transfer object ownership to not
do so; the latter may require enhancing member applications to perform functions internally that
were previously handled externally through ownership transfer.

2.3.2.1.3 Issue: Time-managed Multi-architecture Applications

DESCRIPTION

An important multi-architecture consideration is time management. Some simulation
architectures are intended to support only real-time operation, while others possess specialized
services for non-real-time operation. The construction of a multi-architecture simulation
environment may require the simulation environment development team to integrate time
representations and time management schemes not previously used in a simulation environment.

Obviously, mixing architectures imposes some significant constraints on how time is
managed in the environment. However, issues related to how messages are time-stamped, how
time is calibrated across the various applications, and how to recover if the processing load
causes some member applications to fall behind wall-clock time are all design issues with
different solutions across the different architecture communities. Failure to reconcile these
differences can lead to significant errors in how time is advanced across the multi-architecture
environment.

RECOMMENDED ACTION(S)

The simulation environment development team may need to review and extensively
revise existing software code and operating procedures or create new software and procedures to
accommodate various time representations and time management schemes. Experiments should
be performed to determine the best way to overcome the inherent difference between a device
capable of manipulating time and a device that is not capable of doing so. Coordination schemes
might require real-world events to be correlated to simulated events that occur.

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 2-12

Two use cases should be considered. The first is the integration of time-managed member
applications into a non-time-managed simulation environment. The second is the integration of
non-time-managed member applications into a time-managed simulation environment. The
recommended action(s) for the first use case are (1) to adapt the interface of the time-managed
member applications to respond with a time advance grant for each time advance request, and (2)
to manage the execution speed of the member applications to keep pace with the other
applications in the simulation environment. The recommended action for the second use case is
to manage the execution speed of the member applications to keep pace with the other
applications in the simulation environment.

2.3.2.1.4 Issue: Inconsistent Development and Execution Processes

DESCRIPTION

Well-defined and understood processes and procedures for building simulation
environments exist within a given architecture community. What does not exist is consistency of
those processes and procedures across architecture communities in a multi-architecture
simulation environment. In addition, communication between these distinct architecture
communities can be a significant problem because of differences in terminology and can lead to
misunderstandings that can require significant rework at some point later in the process.

RECOMMENDED ACTION(S)

The key to allowing teams from different architecture communities to work together
successfully in a multi-architecture environment is to provide a mechanism for understanding
unique processes and procedures and to correlate the unique terminology.

Experts from each of the architecture communities involved should coordinate and
correlate their individual processes and procedures so that expectations can be managed and
schedules can be coordinated. For instance, one community may take extra time working on the
details of the SDEM (e.g., HLA and TENA) while others may be more concerned about the
details of how the data flows on the network (e.g., DIS). This area is ultimately less of a
technical issue and more of a management issue.

A documented common set of terminology that correlates terms across the architectures
used in the multi-architecture environment will allow the individual development teams to
clearly understand the other’s intent when working together to design and implement the
requisite architecture. The DSEEP provides annexes for DIS, HLA, and TENA that can be used
as a starting point for relating terminology across architectures. This correlation of terminology
is critical as it allows teams with their own “language” the ability to communicate effectively
throughout the development process.

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 2-13

Another way to help bridge the knowledge gap across teams’ expertise is to have focused
training sessions where the participating teams can learn about the other architectures and build a
rapport. While ideally informal in format, each architecture team can have the opportunity to
present the basics of what their architecture is and how it works. For example, the TENA
community has created a TENA Overview Course and a more in-depth TENA Technical
Introduction Course that can be presented and discussed. While these are likely sufficient to start
a fundamental understanding of the TENA architecture, a more in-depth programming class, the
TENA Hands-On Training, is also available when necessary.

2.3.2.1.5 Issue: Interest Management Capability Differences

DESCRIPTION

In a distributed simulation architecture, interest management refers to data filtering
capabilities that may in some way limit network data transmissions so that member applications
receive only the data they are interested in. Different distributed simulation architectures have
different interest management capabilities, features, and power. In a multi-architecture
simulation environment, the simulation environment designer should reconcile the different
interest management capabilities of the linked architectures, and the architecture-specific interest
management mechanisms used within single architectures, with each other. For example, DIS
uses a broadcast scheme (all member applications receive all data). To reduce the load of
incoming data for DIS member applications, a variety of DIS filters, varying in application
specificity, have been developed. In some DIS simulation environments, PDUs are filtered based
on the site/host identification of each PDU. In DIS member applications that include a gateway
for interface with HLA or TENA member applications, the PDUs generated by the gateway may
all have the gateway’s site/host identification, defeating the site/host filtering scheme. For
another example, HLA includes significant interest management capabilities through its
Declaration Management and Data Distribution Management services. When HLA and non-
HLA member applications are connected using a gateway or middleware, it may be possible to
replicate some or all of the filtering achievable within an HLA federation through some other
mechanism within the gateway or middleware in order to provide the HLA member applications
with an input data stream consistent with their expectations. For example, a DIS-HLA gateway
was enhanced to mimic some HLA Data Distribution Management capabilities using
experimental DIS PDUs [Williams and Smith, 2007]. Furthermore, attention should be given to
the effects that such filtering would have in an architecture where member applications may
assume that they are receiving all network messages (e.g., DIS).

RECOMMENDED ACTION(S)

Interest management is an area where different architectures/protocols vary widely [e.g.,
Specht, 1997]. Some of the interest management capabilities between architectures are

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 2-14

equivalent, or nearly so, whereas others may be quite different. For example, TENA has interest
management capabilities analogous to HLA’s Declaration Management services (filtering based
on object classes) [Cutts et al., 2006] but does not have capabilities analogous to HLA’s Data
Distribution Management services (filtering based on overlapping attribute value ranges) [Morse
and Steinman, 1997; MÄK Technologies, 2009]. Approaches to resolving interest management
capability differences depend heavily on the specific set of architectures present in the multi-
architecture simulation environment and the interest management features used and supported by
the member applications within their respective architectures. Some approaches, more or less
applicable to particular circumstances, can be identified.

Interest management capability differences are often resolved in the gateways and
middleware used to link multi-architecture simulation environments. In a simulation
environment linking HLA member applications to non-HLA member applications using a
gateway or middleware that can use the HLA Declaration Management and Data Distribution
Management services, configure the gateway/middleware to use those services to subscribe only
to data the non-HLA member applications wish to receive [e.g., Griffin et al., 1997], so that only
the desired data will be translated and sent on to the non-HLA member applications. (Note: This
has the additional benefit of reducing the translation workload of the gateway/middleware.) This
approach requires that the gateway/middleware subscriptions be configurable and that it
subscribes to the complete set of data required by all of the non-HLA member applications that
are connected through it. Such gateway/middleware subscriptions can be static (set during
simulation initialization) or dynamic (set and changed by member applications during simulation
execution); some gateway/middleware software can support both subscription types [e.g.,
Hougland and Paterson, 2000]. In a multi-architecture simulation environment linking HLA
member applications to non-HLA member applications using a gateway or middleware that can
use the HLA Declaration Management but not the Data Distribution Management services [e.g.,
Wood and Petty, 1999], or one that cannot use either class of services, configure the
gateway/middleware to perform internal filtering on the input HLA data it receives before
generating output non-HLA network messages. This requires that the gateway/middleware have
an internal filtering capability and that the data requirements of the member applications
connected via the gateway are somehow input to the gateway; the latter may happen during
simulation environment design rather than dynamically during simulation environment
execution.

In DIS, site/host filtering is sometimes used to provide a degree of interest management.
For DIS member applications that are, or may be, used within a multi-architecture simulation
environment, problems related to interest management capability differences can be preempted
to an extent by using filtering schemes other than site/host filtering. Failing this, for DIS member
applications that do use site/host or similar filtering [e.g., O’Connor et al., 2006] and are

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 2-15

connected to a multi-architecture simulation environment with a gateway, configure the gateway
to use the site/host values corresponding to the member applications that sent the original
messages when translating into DIS PDUs or disable site/host filtering in the receiving DIS
member applications [Gallo et al., 2006].

2.3.2.1.6 Issue: Gateway Usage and Selection Decisions

DESCRIPTION

In the context of multi-architecture simulation environments, gateways are
software/hardware systems that translate data messages and control commands from one
interoperability protocol (e.g., DIS) to and from another (e.g., HLA) during execution of the
simulation environment. Typically (but not always), gateways are stand-alone nodes on the
network that receive messages in one protocol from the network, translate them to another
protocol, and re-send them to the network. Historically, gateways have been widely used to
integrate multi-architecture simulation environments because they have attractive advantages,
including the possibility of integrating a member application developed for single-architecture
simulation environments into multi-architecture simulation environments without modification
and the ready availability of gateways for the most common interoperability protocols. However,
their use potentially incurs certain penalties within the simulation environment:

 Latency for the time required to translate the data from one protocol to another

 Latency for an additional network message transmission if the gateway(s) are separate
network nodes

 Cost for additional computers if the gateway(s) are separate network nodes

 Computational burden for protocol translation on the member application host computer
if an embedded gateway is used

 Potentially significant effort required to properly configure multiple gateways

Implementers considering the use of gateways in a multi-architecture simulation
environment face several decisions:

 Is a gateway, in general, an appropriate choice for the simulation environment in
question?

 If a gateway is appropriate, which of the available gateways should be used, or should a
new gateway be implemented?

 If an available gateway is used, does it meet the needs of the simulation environment as
is, or will modifications to it (or the member applications) be required?

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 2-16

These decisions should be informed by knowledge of the gateways available. As to the
first question, alternatives to gateway use include integrating common communications
middleware into all member applications and modifying all member applications to use a single
architecture. As to the second question, different gateways may have different performance,
capacity, interoperability protocol coverage, ease of configuration and use, suitability for use in
secure environments, and cost. These characteristics determine which gateway, if any, is best for
the simulation environment.

RECOMMENDED ACTION(S)

Gateways have been and continue to be widely used to connect member applications into
multi-architecture simulation environments (e.g., gateways were used beginning with the
Platform Proto-Federation [Cox et al., 1996] and, more recently, in the Joint National Training
Capability [Bizub et al., 2006] and the Joint Mission Environment Test Capability [LeSueur et
al., 2009]). Some large multi-architecture simulation environments will use multiple gateways
for different purposes [e.g., O’Connor et al., 2006; Testa et al., 2006]. Despite their ubiquity and
utility, gateways are not a multi-architecture panacea. For any particular simulation environment,
the decisions of whether to use a gateway and, if so, which one to use, should be informed by
knowledge of the gateways available. Gateways should be used only for simulation
environments where the advantages outweigh the disadvantages. In other situations,
mechanisms/techniques other than gateways such as modifying all member applications to use a
single architecture or the use of multi-protocol common middleware integrated into all member
applications may be more appropriate. For example, common middleware was used for the
Training and Doctrine Command (TRADOC) Battle Lab Collaborative Simulation Environment
because of latency, data loss, and cost concerns [Rieger and Lewis, 2006].

When deciding which of the available gateways should be used, or whether a new
gateway should be implemented, different gateways may have different performance [Gminder
et al., 1996], capacity [Cox et al., 1997], interoperability protocol coverage [Wood et al., 1997;
Wood and Petty, 1999], ease of configuration and use, suitability for use in secure environments,
and cost. These characteristics determine which gateway, if any, is best for the simulation
environment; the simulation environment designers should consider the requirements of the
intended application and select the gateway that best meets those requirements. For many
simulation environments, commercial gateways may be available and suitable [O’Connor et al.,
2006; Rieger and Lewis, 2006]; they are among the product offerings of many simulation
software vendors. Government-owned gateways may be found in M&S resource repositories.
Some architectures, e.g., TENA, include code generators that can assist in producing application-
specific gateways [Hudgins, 2009], although such generated gateways may require additional
implementation effort [LeSueur et al., 2009].

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 2-17

Some multi-architecture simulation environments may require the integration of member
applications that use more than two architectures, including distributed simulation
interoperability protocols (e.g., DIS, HLA, TENA, Common Training Instrumentation
Architecture [CTIA]) and other related protocols (e.g., SIMC4I Interchange Module for Plans,
Logistics, and Exercises, Tactical Automated Data Information Link [SIMPLE, TADIL]). The
situation is exacerbated if multiple versions of a single protocol (e.g., HLA 1.3 and IEEE 1516
versions) are used. Because gateways are typically developed to translate between a single pair
of architectures (e.g., an HLA–DIS gateway), developers of a simulation environment with
multiple protocols may face the need to acquire, configure, test, and support gateways for every
pair of protocols in use or to acquire or develop more capable or configurable gateways. In these
situations, they should attempt to acquire or develop gateways that can translate between
multiple protocols and SDEMs.

2.3.2.1.7 Issue: Gateway Translation Paths

DESCRIPTION

Each gateway in a multi-architecture simulation environment constitutes a translation
path between one pair of architectures. If a multi-architecture simulation environment is
configured with two or more translation paths between a single pair of architectures, duplicate
translation of data messages and/or control commands may occur, resulting in redundant and
potentially inconsistent information being sent to member applications.

RECOMMENDED ACTION(S)

To resolve this issue, implementers should ensure that there is at most one translation
path between a given pair of architectures in a multi-architecture simulation environment. Often
this can be done by using at most one gateway for each pair of protocols. However, if the
specialized translation needs of the member applications or the performance requirements of the
overall simulation environment require the use of more than one gateway, then the data each
gateway is translating should be partitioned to avoid redundant receipt and translation, either by
separating the networks each gateway is connected to [O’Connor et al., 2006] or by configuring
the gateways to translate mutually exclusive subsets of the incoming data.

However, even if there is only one gateway between each pair of protocols, multiple
paths can arise indirectly. For example, suppose three single-architecture simulation
environments A, B, and C are connected via three gateways (A–B, A–C, B–C) into a multi-
architecture simulation environment; then data sent from A can reach C directly through the A–C
gateway, and also indirectly, through the A–B and B–C gateways. A straightforward analysis of
the simulation environment connectivity should reveal this problem. Physically separating the
networks each gateway is connected to may resolve the issue [O’Connor et al., 2006].

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 2-18

2.3.2.1.8 Issue: DIS Heartbeat Translation

DESCRIPTION

The DIS protocol requires that Entity State PDUs be sent for all entities at a standard-
specified minimum frequency, even if the entities are completely static; these PDUs are
commonly known at the DIS “heartbeat.” This can create unnecessary message traffic and
overhead in non-DIS simulation environments that send object attribute updates only when an
attribute value has changed. On the other hand, failure to generate such “heartbeat” updates by
non-DIS member applications can cause unintended entity deletion in DIS simulation
environments as a result of “time out.”

RECOMMENDED ACTION(S)

Member applications that generate DIS Entity State PDUs for transmission to DIS
member applications, either for their own entities or as a result of translating non-DIS updates
(e.g., HLA-to-DIS translation in a gateway), should be implemented to do so for each simulated
entity at a rate that satisfies the DIS heartbeat requirements, even for those entities that have not
had any attributes updated. A straightforward approach is to implement a time-dependent update
cycle within those member applications that produces the DIS heartbeat update at the required
rate. This will require maintaining a complete set of attributes for each simulated object from
which to produce the update. This approach was used in the Distributed Mission Operations
Portal [Valle et al., 2006].

Member applications that receive DIS Entity State PDUs, either because they need the
state of the simulated objects for their own models or to translate them into non-DIS updates
(e.g., DIS-to-HLA translation in a gateway), should be implemented to appropriately handle DIS
heartbeats for static entities (those where no attribute has changed since the last update). For
example, a gateway performing DIS-to-HLA translation should determine, upon receiving a DIS
update, which of the simulated object’s attributes have changed and only generate HLA object
attribute updates for those changed attributes; it is possible that none changed and no HLA
update at all is generated. This capability is present in middleware supporting DIS–HLA
interoperation in the TRADOC Battlelab Collaborative Simulation Environment [Rieger and
Lewis, 2006].

This issue and its recommended actions can be seen as a special case of the closely
related Issue 2.3.2.1.1 (Object State Update Contents), and a solution to one issue will often be
closely associated with a solution to the other issue. Both of the actions recommended for this
issue are normally implemented in DIS–HLA gateways [e.g., Cox et al., 1996]. However, this
issue could arise even if DIS is not involved, as some non-DIS applications have also found it
useful to implement DIS-style heartbeats. For example, the Joint Experimental Federation, an

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 2-19

HLA simulation environment, did so to avoid spikes of network traffic caused by object attribute
queries [Ceranowicz et al., 2002].

2.3.2.1.9 Issue: Multi-architecture and Inter-architecture Performance

DESCRIPTION

When multiple distributed simulation architectures and member applications developed
for multiple architectures are linked into a single simulation environment, performance should be
considered. In some (but not all) multi-architecture simulation environments, inter-architecture
differences in runtime performance may exist. If present, inter-architecture performance
differences may result from the fundamental design assumptions of the distributed simulation
architectures or the implementations of the architectures’ supporting software (e.g., HLA RTI,
TENA middleware). Performance issues may also arise from the technical solutions used to link
the components of the multi-architecture simulation environment (e.g., gateways) and the
implementations of the member applications. For some simulation environments and some
applications, performance differences significant enough to affect the utility of the multi-
architecture simulation environment are possible.

RECOMMENDED ACTION(S)

The first recommended action in this regard is to determine if a multi-architecture or
inter-architecture performance issue actually exists. It is possible that there are no significant
performance issues; in particular, the existence of performance issues should not be assumed
from outdated preconceptions based on previous generation software implementations that have
been superseded by improved software and higher speed networks. Careful and controlled
measurement of performance within the simulation environment, perhaps using existing
monitoring tools, can establish whether this issue is present or not; performance testing should
include any gateways [White, 2001]. Such performance testing is likely to be necessary to
determine if the simulation environment meets the performance requirements of the application
[Williams and Smith, 2007], so this step does not necessarily imply great additional effort.

If multi-architecture and inter-architecture performance issues do exist, several non-
mutually exclusive approaches are possible. First, designers may be able to preempt the issue
altogether by selecting architectures and member applications with runtime performance
appropriate to the application. As noted for Issue 2.3.2.1.6 (Gateway Usage and Selection
Decisions), any performance penalties associated with gateways should be considered before
choosing to integrate a multi-architecture performance environment with a gateway (or
gateways) and when selecting a particular gateway. Whenever possible, member applications
that will need to carry out high-performance, tightly bound interactions with each other should
use the same architecture so as to avoid inter-architecture translation latency. Finally, existing

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 2-20

techniques such as smoothing, dead reckoning, and heartbeats may be adapted to provide object
attribute updates at the rate and precision needed for performance-sensitive member applications
in a multi-architecture simulation environment [e.g., Marsden et al., 2009].

2.3.2.1.10 Issue: Translating Non-ground-Truth Network Data

DESCRIPTION

A common assumption in distributed simulation architectures is that data sent on the
network describing the state of the simulated world is “ground truth,” i.e., is correct with respect
to that simulated environment. It is typically left to individual member applications to
intentionally degrade or corrupt that ground-truth information in situations where a system or
entity they are simulating would not have access to perfect and complete information. In some
simulation environments, however, specialized member applications are used to perform that
information degradation (e.g., modeling weather and terrain effects on communications in a
communications effects server), and the degraded information is retransmitted on the network to
other member applications. In multi-architecture simulation environments, such retransmitted
degraded information must be translated from the originating architecture’s data model and
protocol into the other architecture’s data model and protocol. This translation may occur in a
gateway, in middleware, or elsewhere. The deliberately incorrect data may cause problems
through its violation of the ground-truth assumption (e.g., seemingly inconsistent location data
for a transmitting simulated entity) and the fact that information is transmitted twice (i.e., first in
its original correct form and second in its degraded form).

RECOMMENDED ACTION(S)

This issue arises only if the deliberately incorrect non-ground-truth data is retransmitted
in a form that is otherwise identical to the ground-truth data and thus indistinguishable from it,
e.g., two correctly formatted DIS Entity State PDUs with different locations for the same
simulated object. It is distinguishable from Issue 2.3.2.1.7 (Gateway Translation Paths) in that it
arises not from inadvertent redundant translation in a gateway but from deliberate alteration and
retransmission of data. One resolution to this issue is to use architecture features to distinguish
ground-truth from non-ground-truth data. Such features could include different message types
(e.g., a special HLA interaction class [Carr and Roberts, 1997; Lacetera and Torres, 1997]) or
flags within a single message type. The translators (gateways, middleware) used to link the
multi-architecture simulation environment must be able to correctly translate these non-ground-
truth indicators into a form that conveys the same information after the translation.

If no suitable architecture/protocol features are available, it may suffice to modify the
affected member applications to be aware of the sources of the different types of data (e.g.,
ground truth from the member application simulating an object, and non-ground truth from a

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 2-21

communications effects server) and to use only the incoming information from the desired
source; this is an example of receiver-side filtering. Such modifications and intentions should be
documented in advance in the simulation environment agreements (see Section 2.4.2 [Activity
4.2: Establish Simulation Environment Agreements]).

2.3.2.1.11 Issue: Object Identifier Uniqueness and Compatibility

DESCRIPTION

Many object simulation and management operations within an architecture require unique
object identifiers. For example, in HLA the RTI generates a federation-wide unique object name
string when the object is registered. Similar operations may occur in other architectures. In a
multi-architecture simulation environment, measures should be taken to ensure that (1) the object
identifiers are unique across architectures and (2) object identifiers generated within one
architecture can be used in another architecture to reference the identified object.

RECOMMENDED ACTION(S)

The specifics of an approach to resolve this issue depend on the object identifier
requirements of the different architectures linked into the multi-architecture simulation
environment. However, in multi-architecture simulation environments that use a gateway or
middleware, the gateway/middleware can be configured or modified to translate or map object
identifiers used in one architecture to an object identifier acceptable in the other architecture.
This translation or mapping must consider both format and uniqueness requirements.

Uniqueness can often be assured by using the services or conventions already available in
each architecture for that purpose (e.g., the object registration services in HLA, which return
object identifiers unique within the HLA federation execution [Simulation Interoperability
Standards Committee of the IEEE Computer Society, 2000]) with the gateway/middleware using
those services as if it were the originating member application for the simulated objects whose
data it is translating. For classes of simulated objects with object attributes that may be
references to other objects using their object identifiers, member applications may need to store
extra information with those object references, such as object class (datatype) and originating
member application of the referenced object, to resolve situations where an update to that object
reference attribute is received before the referenced object itself is discovered [Nielsen and
Salisbury, 1998].

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 2-22

2.3.2.1.12 Issue: Developing a Distributed Simulation Environment Composed of
Classified and Unclassified Components

DESCRIPTION

When implementing multi-architecture environments, a Cross-Domain Solution (CDS) is
often required to support the various users with different security clearances and to prevent users
from obtaining access to information for which they lack authorization. A CDS is a combination
of hardware and software that controls the passing of data between two or more domains with
different levels of security classification, for instance, UNCLASSIFIED and SECRET or
SECRET and TOP SECRET. The security requirements of CDS often take significant time to
put into place. Software interfaces of CDS systems are typically not configurable. While a CDS
is critical to supporting the classification and data distribution requirements, it may cause
problems supporting development, integration, and test activities of the simulation environment.

RECOMMENDED ACTION(S)

The difficulty of implementing a CDS in a multi-architecture simulation environment
introduces additional challenges over that of a single-architecture environment. The multi-
architecture environment may force the use of gateways to get data in and out of the CDS and
could potentially require data conversions that would be unnecessary in a single-architecture
environment. The CDS may be either unidirectional or bidirectional and may involve the
removal of portions of the data that flow through it to meet given security requirements. Data
conversion could also be forced when an architecture version in use has been updated but the
CDS has not been through the process of updating its internal architecture usage because of
security constraints and timelines (e.g., the use of TENA v5.2.2 in a CDS and the use of TENA
v6.0 by member applications).

The simulation environment designer should consider partitioning applications on either
side of the CDS so as to minimize the conversion necessary through a gateway. For example, if
TENA and DIS are participating architectures and the CDS only supports TENA, the
recommended approach is to place all DIS application on the same side of the CDS if at all
possible. Native TENA data can flow to and through the CDS on both sides, and translation
to/from DIS would only be required at a single point. While it is recognized that this is not
always possible, the key is to look at the how the CDS affects the overall architecture and to
minimize gateway usage where possible.

2.3.2.1.13 Issue: Multi-Architecture Save and Restore

DESCRIPTION

For some applications of distributed simulation environments, such as those that execute
for long periods of time to support a training exercise involving many facilities and personnel,

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 2-23

the ability to periodically save the state of an executing simulation environment and later restore
to that saved state, perhaps after a catastrophic crash of the system or a planned break in the
exercise, is very important. Accurate and reliable save and restore operations can be challenging
even within a single-architecture simulation environment. Coordinating save and restore across
architectures within a multi-architecture simulation environment may require special procedures
and/or enhancements to the gateways/bridges/middleware connecting the simulation
environments and the member applications within them.

RECOMMENDED ACTION(S)

The simulation environment designer should analyze and document the save and restore
capabilities for each architecture in the simulation environment. The objective is to save a
snapshot of the simulated state of the simulation environment as a reference point for future use.
The primary practical means to achieve this objective in a multi-architecture simulation
environment is to simultaneously (in simulation time) save the simulated state of each of the
member applications. Automated processes to save and restore simulation states are preferred but
manual procedures may have to be used. Simulation environment implementers should develop
the procedures that will be used to initiate the collective saving of simulation state and, later, the
restoring of the saved state, if necessary. Save and restore procedures are potentially the topic of
a simulation environment agreement (see Section 2.4.2 [Activity 4.2: Establish Simulation
Environment Agreements]).

2.3.2.1.14 Issue: Network Protocol Configuration

DESCRIPTION

Typically, distributed simulation protocols (such as DIS, HLA, and TENA) exploit
configuration options and features in the underlying network (also known as over-the-wire)
protocols that support them. In a multi-architecture simulation environment, different network
protocol configuration options may be preferred by the different architectures (e.g., IP Multicast
vs. IP Broadcast), introducing the potential for incompatibilities.

RECOMMENDED ACTION(S)

The goal should be to limit the number of network protocols to the greatest extent
possible in order to maximize throughput and minimize latency over the network. For example,
one architecture may be more efficient and configurable over the network (e.g., TENA vs. DIS).
The design of the simulation environment should include a conversion of the data to the more
efficient protocol, and within that protocol, exploitation of available network configuration
options to enhance performance [e.g., Moulton et al., 1998]. This conversion typically includes
the use of gateways to effectively convert the data between the distributed simulation protocols.

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 2-24

An exception to this recommendation would be when the simulation environment
executes within a single local area network (LAN) and throughput and latency are not a concern
as they are when using a wide area network (WAN) [O’Connor et al., 2006]. While gateways
may be required to convert the data, they would not be in place specifically to address the
maximization of throughput and minimization of latency over the network.

An additional consideration is the configuration of network devices such as routers and
switches to support multicast over a WAN [Lasch and Paschal, 2000]. The use of UDP multicast
traffic over the WAN provides many efficiencies over Transmission Control Protocol (TCP)
traffic but is difficult to configure. This is especially true over secure networks that include
encryption equipment such as Tactical Local Area Network Encryption (TACLANE) devices.
Configuration by network experts who understand multicast and know how to correctly
configure network devices to support it is critical and should be accounted for when designing
the simulation environment.

2.3.2.2 Consolidation of “Design Simulation Environment” Activities to Support Multi-
architecture Events

MULTI-ARCHITECTURE-SPECIFIC ACTIVITY INPUTS

 List of architectures necessary to support the selected member applications

 Development and execution processes for the selected architectures

 Information on common communications middleware

 Information on available gateways

MULTI-ARCHITECTURE-SPECIFIC TASKS

 Perform trade-off analysis on whether to use gateways or common communications
middleware, or to modify member applications to migrate to a different architecture.

 Allocate member applications to architectures.

 Select over-the-wire protocols.

 Allocate member applications and architectures to enclaves in CDS.

 Analyze translation paths and decide on an approach to avoid redundant translations.

 Perform preliminary testing to identify multi-architecture and inter-architecture
performance issues.

 Conduct architecture training sessions.

 Document agreed-upon common terminology across architecture communities.

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 2-25

 Select gateways.

 Identify an approach for mapping object identifiers across architectures.

 Depending on simulation environment requirements, some of the following may also
be necessary:

o Identify necessary gateway modifications.

o Develop procedures for initiating save and restore of the simulation
environment state across member applications.

o Decide on an approach to perform object state updates.

o Decide on an approach to perform object ownership transfer.

o Decide on a time management scheme.

o Decide on a DIS heartbeat approach.

o Decide on an approach to interest management.

o Decide on an approach to differentiate between ground-truth and non-ground-
truth data.

MULTI-ARCHITECTURE-SPECIFIC ACTIVITY OUTCOMES

 Within “Design simulation environment” (per the DSEEP)

o Architecture design identifying how:

 Gateways partition the environment into segments for the different
architectures

 Member applications are assigned to architectures

 Member applications and architectures are mapped to CDS segments

 Selection of over-the-wire-protocols

 Within “Implied requirements for member applications modifications” (per the
DSEEP)

o Requirements to modify member applications to meet object state update
agreements

o Requirements to modify member applications to meet object ownership
agreements

o Requirements to modify member applications to meet the selected time
management scheme, which can involve

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 2-26

 Adapting the interface of time-managed applications to respond to
time advance requests

 Modifying member applications to manage execution speed

o Requirements to implement and/or respond to DIS heartbeat requirements

o Requirements to implement separation of ground-truth and non-ground-truth
data

o Requirements for managing multiple object identify reference

o Requirements to implement saving and restoring of member application state

 Selected common communications middleware

 List of selected gateways

o Requirements for gateway modifications

 Separation of ground-truth and non-ground-truth data

 Requirements for gateway configuration, including

o Interest management configuration

o DIS heartbeat configuration

o Object identify mapping

o Over-the-wire protocol selection and conversion

 Common terminology across architecture communities

2.3.3 Activity 3.3: Design Member Applications

The purpose of this activity is to transform the top-level design for the simulation
environment into a set of detailed designs for the member applications. The scope of the design
task will depend on the amount of previous design work that can be reused. New member
applications will generally require a substantial amount of design effort whereas modifications to
existing member applications will require less effort.

2.3.3.1 Issues

2.3.3.1.1 Issue: New Member Application Architecture

DESCRIPTION

There are applications for which the requirements of a simulation environment dictate
that a new member application be developed. In a single-architecture simulation environment,

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 2-27

the new member application is implemented to operate within that architecture. However, in a
multi-architecture simulation environment, an additional decision arises: For which of the
architecture(s) in the simulation environment is the new member application implemented? This
design decision has both short-term and long-term implications, such as implementation effort
and reusability of the member application, respectively.

RECOMMENDED ACTION(S)

Although the choices are likely to be clear (should the new member application use
architecture A, B, or C?), the factors that influence the decision are varied and inter-related.
Designers should consider each of them, appropriately weighted for the specific situation, before
choosing the architecture for the new member application. Those factors include the following:

 Architectures in the simulation environment. It is unlikely that it makes sense to select an
architecture for the new member application that is not among those already planned for
the simulation environment.

 Requirements of the current simulation environment. Does one candidate architecture or
another for the new member application better support the simulation environment’s
requirements?

 Possible future uses of the new member application. Which of the candidate architectures
allows the member application to be reused most effectively in the future?

 Expertise of the development team. Which of the candidate architectures are the new
member application developers best able to work with?

 Selected architecture integration method and effort. Which architecture integration
method(s) (i.e., gateway, middleware, or native integration) for the selected architecture
are being considered for the new member application, and how much effort will be
required for each of those methods?

 Non-selected architecture integration method and effort. How will the new member
application be integrated with the other non-selected architectures in the simulation
environment (i.e., gateway, middleware, or native integration), and how much effort will
be required for each of the non-selected architectures?

 Multi-purpose middleware. Is there existing multi-purpose communications middleware
software supporting multiple architectures that could be integrated with the new member
application?

 Member application-specific architecture services. Does the member application,
because of its design objectives, make use of architecture services specific to or limited to
one of the candidate architectures (e.g., time management)?

 Testing tools. Are there testing tools available and suitable for the new member
application that operate within one of the candidate architectures?

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 2-28

 Security/classification level. Will the member application be required to operate at
security/classification levels higher than unclassified, and if so, what is the availability of
security cross-domain solutions for each of the candidate architectures?

 Standards and mandates. Are there standards or mandates relevant to the new member
application that require the use of a specific architecture?

 Sponsor guidance. What guidance regarding the candidate architectures does the
organization sponsoring the development of the new member application have?

2.3.3.2 Consolidation of “Design Member Applications” Activities to Support Multi-
architecture Events

MULTI-ARCHITECTURE-SPECIFIC ACTIVITY INPUTS

 None beyond those called for in the DSEEP

MULTI-ARCHITECTURE-SPECIFIC TASKS

 Within “Design member applications” (per the DSEEP)

o Decide on which architecture to use for new member applications.

MULTI-ARCHITECTURE-SPECIFIC ACTIVITY OUTCOMES

 Within “Member application designs” (per the DSEEP)

o For new member applications, identification of which architecture to use

2.3.4 Activity 3.4: Prepare Detailed Plan

The purpose of this activity is to develop a coordinated plan to guide the development,
test, and execution of the simulation environment. This requires close collaboration among all
participants in the simulation environment to ensure a common understanding of the various
goals and requirements and also to identify (and agree to) appropriate methodologies and
procedures based on recognized systems engineering principles. The plan should include the
specific tasks and milestones for each member application, along with proposed dates for
completion of each task.

2.3.4.1 Issues

2.3.4.1.1 Issue: Cost and Schedule Estimating for Multi-architecture Development

DESCRIPTION

In the detailed planning phase, existing work breakdown structures should be refined to
account for implementation of defined design solutions. Depending on the specified roles and

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 2-29

responsibilities for the various technical teams and the nature of the design solutions, initial
schedule and cost estimates may be significantly impacted. This is particularly true in multi-
architecture applications, as proper coordination across disparate developer teams requires
frequent technical interchange meetings and extensive management controls. If sponsor
resources are deemed to be insufficient to fully implement the revised plans, undesirable
“shortcuts” could be implemented to address resource gaps, potentially affecting the quality of
simulation results.

RECOMMENDED ACTION(S)

Experience shows that three factors influence the estimation of cost and schedule for
multi-architecture simulation environment development. The first factor is whether team
members can support the defined schedule of development, integration, and test events with the
resources provided. Certain personnel will be critical to the success of these events, and thus
some degree of deconfliction of personal schedules may be required, as well as downscoping of
responsibilities if available resources for certain individuals are insufficient. The second factor is
the availability of the design articles identified in the previous DSEEP activity (e.g., gateways,
CDS, networking tools) and the affordability of these articles given resource constraints. The
third factor is the availability of the appropriate facilities. Simulation facilities are normally high-
use assets and consequently require a lengthy lead time for scheduling. All of these factors
should be accounted for in revised schedules and funding estimates.

2.3.4.1.2 Issue: Tools for Verifying Multi-architecture Data Exchanges

DESCRIPTION

Tool availability is an important issue with respect to multi-architecture development.
The complexity of constructing a multi-architecture simulation environment could require
additional or different computer-aided software engineering (CASE), testing, or monitoring tools
to support integration, test, and execution of such an environment. One critical test for the
integrity of the simulation environment is verifying the ability of gateways or middleware to
correctly perform their intended functions. Significant errors can occur during integration that
can, in turn, lead to costly rework if the detailed planning documents do not adequately address
the need for testing and monitoring tools during simulation environment integration and testing.

RECOMMENDED ACTION(S)

The obvious recommendation is to use tools that the team has available and has
experience using. But what if those tools are inadequate for multi-architecture development? Or
worse, what if there are no consistent tools used that would benefit the multi-architecture
environment?

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 2-30

At a minimum, tools should be available to verify the application interfaces and verify
that the data flowing across those interfaces conforms to established data exchange agreements.
This is especially critical in a multi-architecture environment because of the potentially
significant differences in syntactic and semantic meaning of interface definitions and data across
the architectures. Ideally, tools should be available to perform the verification on each side of the
interface. If the necessary interface verification tools are not available on both sides of the
interface, there are several options that can be taken: search for existing tools, use tools that may
exist for only one side of a multi-architectural interface, or build tools that don’t exist on either
side. This issue reinforces the point of Issue 2.3.2.4 (Inconsistent Development and Execution
Processes).

Searching for existing tools can be accomplished through an architecture-specific
repository such as the TENA website/wiki (https://www.tena-sda.org/), a government off-the-
shelf (GOTS) repository such as the DoD Modeling and Simulation Information System (MSIS)
(a DoD modeling and simulation search engine that has the ability to search across individual
service repositories, http://msrr.dod-msiac.org/), or even searches through standard Internet-
based search engines.

If a tool exists on one side of the architectural interface, it may be used for interface
verification. The caveat is that there is no easy way to verify the data on the “other” side of the
interface. Generally, it is always preferable to have tools on each side of the architectural
interface.

If no tool exists or none is found that meets the needs of the simulation environment,
development of a new tool may be undertaken. This is always a trade-off of resources and time
not typically built into the development schedule; however, the ability to quickly confirm and
verify interfaces can reduce testing time and buy back some potentially lost time sacrificed to
build a new tool. One advantage is that the tool will be available for future use and will likely
reduce development time in the future.

In addition, the way the different architectures are built and operate should be correlated
and documented as part of the simulation environment detailed planning process. For instance,
there should be a way for the test controller to have a quick-look picture of the health and status
of the individual applications and capabilities participating in a given test. While each
architecture involved may provide its own unique way of displaying health and status updates,
these need to be correlated into a usable picture so that the test conductor can make quick and
effective go/no-go decisions based on what is currently executing.

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 2-31

2.3.4.1.3 Issue: VV&A for Multi-architecture Applications

DESCRIPTION

VV&A are important issues with respect to multi-architecture simulation environment
development. VV&A activities should occur concurrently with implementation activities to the
extent possible. Multi-architecture environment developers and users are likely to need
additional information and expert assistance because of their lack of familiarity with the
implementation details of other architectures. Multi-architecture environment infrastructure
functions need to be checked to identify elements that could have adverse impacts upon the
validity of the simulation environment. The performance of the multi-architecture environment
needs to be verified to ensure that information exchange among the participating members
happens as planned. Failure to plan for the VV&A activities required by a multi-architecture
simulation environment can result in costly problems later in the multi-architecture engineering
and execution process.

RECOMMENDED ACTION(S)

VV&A, in the general sense, has a large amount of literature consistent with its
importance in the practice of M&S [e.g., Balci, 1998; Petty, 2010]. However, aspects of VV&A
specific to multi-architecture simulation environments are much less well documented. Some
important VV&A considerations for multi-architecture simulation environment developers
include the following:

1. Multi-architecture-specific components. The simulation environment may include
components specific to its multi-architecture design, such as gateways and middleware.
These “additional” components should be verified, to confirm that they are operating as
specified and intended (e.g., verification that a gateway is translating all of the message
types it is expected to), and validated, to confirm that they are not degrading the
simulation’s validity (e.g., validation of real-time response in a training simulation
including a gateway that imposes latencies) [e.g., Harkrider and Petty, 1996].

2. Distributed simulation support operations. Executing a distributed simulation typically
requires a set of specialized architecture services that provide functionality that is part of
the simulation’s infrastructure rather than part of its modeling. Examples include object
naming, distributed logging, enumeration control, and pause and resume. In a multi-
architecture simulation environment these operations are more complex because they
must be coordinated and reconciled across multiple architectures. Ensuring that these
services operate correctly in a multi-architecture simulation environment will require
additional specialized verification [Williams and Smith, 2007].

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 2-32

3. Correlation. Because of the different design heritage and development histories of its
separate architectures, a multi-architecture simulation environment is arguably more
likely than a single-architecture simulation environment to have multiple representations
of the same object, e.g., multiple terrain databases in different formats or multiple
dynamics models of the same entity. Correlation (agreement) between multiple
representations of the same object is a VV&A consideration in any simulation
environment, but it is exacerbated in the multi-architecture context. Additional V&V
testing focused on correlation is likely to be required (e.g., terrain correlation in the
Platform Proto-Federation [Petty et al., 1996] and the Urban Resolve 2015 experiment
[Williams and Smith, 2007]).

4. Validation of architecture elements. Some architectures include standard models as part
of the architecture itself (e.g., dead reckoning in the DIS specification or coordinate
conversion in the TENA middleware). When member applications that use such
architectures are linked into a multi-architecture simulation environment, it may be
necessary to validate those architecture-embedded models in the context of their
interactions with other parts of the overall simulation environment.

5. Multiple accreditors. Because the simulation environment is multi-architecture, there
may be multiple accreditors (organizations responsible for approving the use of the
simulation environment for the intended application). Additional V&V testing, and
additional documentation of those tests, may be needed to meet the different testing and
documentation requirements of the multiple accreditors. Simulation designers should
allow for this effort during planning.

6. Multiple architecture communities. Similar to the previous consideration, the
communities associated with the different architectures may have different expectations
for V&V testing and for documentation of those tests, thus adding to the VV&A effort
for a multi-architecture simulation environment. Simulation designers should allow for
this effort during planning.

2.3.4.1.4 Issue: Multi-architecture Data Collection

DESCRIPTION

Data collection in a multi-architecture simulation environment execution is critical for
effectively determining and using the results of a given test/exercise/experiment. The multi-
architecture design of the event offers multiple sources, locations, and architectures/protocols
from which to extract data to determine the appropriate selection and application of data
collection, analysis, and management tool(s). This greatly complicates efforts to translate the raw
data into desired measures.

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 2-33

RECOMMENDED ACTION(S)

Two strategies are used to collect data in simulation environments. One is to centralize
data collection at a single point. The other is to localize data collection at individual member
applications. Centralized data collection simplifies the collection by isolating the data collection
to a single location. However, centralized data collection has been shown to be a system
performance inhibitor as comprehensive data collection can be a time-consuming process when
great quantities of data are produced during the simulation event. On the other hand, while
localized data collection does not impose a performance burden on system performance,
ensuring the collection of data is complete is more difficult and correlating the data is more
complex. The use of multi-architectures makes data collection even more difficult in that
architecture-defined data formats will be used. The amount of data and the complexity of
correlating the data will be increased because of the use of multiple architectures. Simulation
environment developers should implement and test the data collection and correlation scheme
that seems to be most appropriate for the simulation environment and should be prepared to
make modifications if problems are discovered.

2.3.4.1.5 Issue: Tool Incompatibility

DESCRIPTION

Tools used in the development and execution process may be incompatible across
architectures. This applies to both development tools and execution tools. An example of
developmental tool incompatibility is that different object model editors cannot exchange data
because of a lack of syntactic interoperability (incompatible Data Interchange Format [DIFs]) or
a lack of semantic interoperability (incompatible object model structure or data elements). An
example of execution tool incompatibility is that different data loggers have incompatible
timestamps because of architecture time management characteristics.

RECOMMENDED ACTION(S)

Since it is unlikely that teams across architectures will be familiar with the tools
commonly used with the other architecture(s), an evaluation should be performed of the tools
available in each architecture and tool usage decisions should be made as early as possible in the
development life cycle. If possible, agreeing to use tools primarily from a single architecture has
the potential to reduce conflict and confusion as development proceeds.

Standardizing on one tool set as provided by a given architecture may introduce schedule
risk because of unfamiliarity and additional training necessary to use that architecture’s tool
within the context of another architecture. However, the positive aspect is that it could reduce
technical risk by minimizing the tools necessary to perform a given function as well as
minimizing the tool instances and installations required. Tools such as the RTI Console and

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 2-34

TENA Console (event management utilities that can be used for monitoring applications joined
to an execution) are specific to a given architecture and would not be directly replicated in other
architectures.

The goal is to select common tools where available and applicable. Questions that should
be asked include: Are there tools from one architecture that could be used in the other
architecture(s) (e.g., gateway data verification)? Is it necessary to resort to duplicative usage of
multiple tools across architectures simply because that is what exists in the other architecture(s)?
Is it possible to update or convert existing tools to support the other participating architecture(s)?
Focusing on minimizing redundant instances of similar tools across the multi-architecture
environment will have a positive impact on the ability to execute as efficiently as possible.

On-going efforts within the Live-Virtual-Constructive Architecture Roadmap
Implementation are working to reduce this issue.

2.3.4.2 Consolidation of “Prepare Detailed Plan” Activities to Support Multi-architecture
Events

MULTI-ARCHITECTURE-SPECIFIC ACTIVITY INPUTS

 Personnel with experience in multi-architecture environment

 List of selected gateways

 Information on available facilities

MULTI-ARCHITECTURE-SPECIFIC TASKS

 Refine cost and schedule to account for multi-architecture concerns.

 Extend the existing DSEEP Task to include testing and verification tools for multi-
architecture environments:

o “Complete selection of necessary management tools, reusable products and
simulation environment support tools, test and monitoring tools, and develop
plan for acquiring, developing, installing and utilizing these tools and
resources. Select tools that are applicable across architectures.”

 Extend the existing DSEEP Task to include multi-architecture V&V concerns:

o “Revise verification and validation plan and test plan (based on simulation
environment test criteria), including multi-architecture concerns—V&V of
gateways, implementation of support functions, multiple representations, and
representations included as part of the architectures, as well as issues with
multiple accreditors.”

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 2-35

 Extend the existing DSEEP Task to include multi-architecture data collection
concerns:

o “Finalize the data management plan showing plans for data collection, data
correlation, management, and analysis.”

MULTI-ARCHITECTURE-SPECIFIC ACTIVITY OUTCOMES

 Within “Simulation environment development and execution plan” (per the DSEEP)

o Revised cost estimate to account for multi-architecture concerns

2.4 STEP 4: DEVELOP SIMULATION ENVIRONMENT

The purpose of this step of the DSEEP is to define the information that will be exchanged
at runtime during the execution of the simulation environment, modify member applications if
necessary, and prepare the simulation environment for integration and test.

2.4.1 Activity 4.1: Develop Simulation Data Exchange Model

In order for the simulation environment to operate properly, there must be some means
for member applications to interact. At a minimum, this implies the need for runtime data
exchange, although it could also involve remote method invocations or other such means of
direct interaction among cooperating object representations. Clearly, there must be agreements
among the member applications as to how these interactions will take place, defined in terms of
software artifacts like class relationships and data structures. Collectively, the set of agreements
that govern how this interaction takes place is referred to as the SDEM.

2.4.1.1 Issues

2.4.1.1.1 Issue: Meta-model Incompatibilities

DESCRIPTION

Differences in the underlying data exchange model structures used by the various
architectures can cause incompatibilities in a multi-architecture environment. Specifically, the set
of data fields that compose an HLA Federation Object Model (FOM) (as specified in the HLA
Object Model Template [OMT]), the set of fields that compose a TENA Logical Range Object
Model (LROM) (as specified in the TENA metamodel), and the set of fields that define DIS
PDU structures are not the same.

Since the SDEMs must align among the architectures in the multi-architecture
environment, the team establishing the SDEM must understand these metamodel differences,

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 2-36

understand the equivalencies and differences across the metamodels, and take actions so that
each architecture’s metamodel specifications are met in a consistent manner.

RECOMMENDED ACTION(S)

The fundamental representation of data in the metamodel of a given SDEM must be
correlated across the architectures used in a given simulation environment. It is critical to the
success of the simulation environment that the semantic meanings of the data representation in
each SDEM be consistent. There are two recommended ways of resolving these
incompatibilities: using an architecture-neutral way of representing the metamodel and the use of
gateways.

The ideal solution is to use an architecture-neutral way of representing the metamodel.
While there is on-going work to develop architecture neutral modeling mechanisms, as in the
Joint Composable Object Model (JCOM) effort, it is most likely that the participating
architectures model their attributes and behaviors in unique ways. Monitoring efforts such as
JCOM and looking for opportunities to implement them into existing architectures is
recommended.

 The use of gateways is the primary recommended action for resolving existing
metamodel incompatibilities. Several factors need to be addressed once the decision is made to
use a gateway to link disparate architectures. The main questions to ask are: How do you choose
the gateway? How do you know that the metamodel incompatibilities have been addressed? Is
there a tool available to support gateway development across architectures?

 Choosing the right gateway for a multi-architecture simulation environment is not
necessarily a difficult task. It is recommended to search any repositories of the participating
architecture communities first [Lutz et al., 2010]. For example, the TENA community maintains
a set of gateways between TENA and several different HLA variants as well as DIS. Information
on these gateways as well as the gateway itself is available in the TENA repository. Other
architecture-neutral repositories such as service-specific Model and Simulation Resource
Repositories (MSRRs) are available and can be easily searched. In addition, a number of
commercial gateway products are available and can be readily used. While the decision about
which gateway to use may be dictated by schedule and budget, there are many available gateway
solutions and it is unlikely that the environment developers will need to build one from the
ground up.

 Testing the gateway to ensure it is accurately translating the metamodel data is critical to
the success of the simulation environment. Data on both sides of the gateway should be verified
for syntactic and semantic accuracy. In addition to any tools provided by the gateway for data
verification, architecture-specific data verification tools, if they exist, should be used to confirm
or identify problems in the data translation.

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 2-37

 Sometimes there is no existing gateway that meets the requirements of the simulation
environment; in that case, one should be built. Tools are available that greatly facilitate the
generation of custom gateways that can then be reused on future projects. One such tool is the
Gateway Builder (GWB) tool. The advantage of a tool like GWB is that mapping between
architectures becomes an easy task once architectural details have been modeled in GWB. GWB
already supports many architectures, including TENA R5.2.2 and R6, HLA (MATREX and
Pitch), and DIS.

2.4.1.1.2 Issue: SDEM Content Incompatibilities

DESCRIPTION

Once the differences in metamodels are understood and addressed, the alignment of
SDEMs across the multi-architecture environment should occur. The semantics of data to be
exchanged must be understood and should be equivalent across the architectures in use.

The issues of SDEM alignment across architectures is not tremendously different from
the issues that arise within a single-architecture environment. This is not to say it is a simple or
quick process. Although names of classes, attributes, and enumeration values give a good clue as
to consistencies and inconsistencies across SDEMs, the process of comparison is often largely a
manual process. If not performed adequately, semantic inconsistency across the multi-
architecture environment can occur.

In some architectures, the metamodel and the content of the SDEM are defined as part of
the architecture specification. DIS and TENA both take this approach, although they also both
provide mechanisms to extend the standard content with additional SDEM elements based on the
needs of the application (e.g., DIS expedient PDUs, TENA LROM). HLA takes a somewhat
different approach, standardizing the SDEM metamodel while allowing users to define SDEM
content on an application-by-application basis. While users typically enjoy the flexibility to tailor
SDEM content to their immediate needs, it often comes at a price. Specifically, when working in
a multi-architecture simulation environment, the wide spectrum of SDEM content across
different architecture communities must be fully reconciled (within the context of the current
application) if the various member applications are to interoperate correctly. This reconciliation
process can be very expensive in terms of both time and resources, and can increase technical
risk if not done correctly.

RECOMMENDED ACTION(S)

There are two recommended paths to explore when faced with SDEM content
incompatibilities in a multi-architecture environment. First, member applications may be
changed to support the native interface of a given architecture. Second, gateways may be used to
bridge SDEM content incompatibilities. This could include the use of an architecture-agnostic

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 2-38

gateway/middleware solution. No matter which approach is taken, alignment must occur across
the SDEMs: alignment of classes and class hierarchies, alignment of attribute assignments to
classes, and alignment of domains (including enumerations) to attributes. As already noted, this
aspect of the recommended action is not unlike that required when reconciling member
applications’ SDEMs in some single-architecture environments, and solutions used in a single-
architecture environment [e.g., Bowers and Cutts, 2007] may be helpful in a multi-architecture
environment.

When considering a change to the native interface of member applications, there is a
trade-off to consider on how much the SDEM will force changes to the interfaces of each
member application. Sometimes this trade-off will constrain the selection of member
applications to those that most closely align with the other member applications, within the same
architecture and across architectures. Changing the native interface of member applications is
usually the most expensive option of the three recommended approaches in both time and
resources.

When using a gateway solution, time and resources should be spent to ensure the
mappings in the gateway(s) are valid. In order for a gateway to accomplish its task, it is
necessary to create detailed data mappings across architectures that specify the data level and
data type, exactly what will be passed through the gateway, and how it will be represented on
each side. This mapping becomes part of the documentation required to verify the correct
operation of the gateway and also serves as a synchronization point between the architecture
teams. This is typically a manual process that requires coordination across teams representing the
incompatible architectures. When performing this manual process, the simulation environment
developers should consider the following types of analysis and similarity metrics:

 Morphological analysis. An understanding of word forms (e.g., understanding that
“aircraft,” “air_vehicle,” and “UAV” are related).

 Grammatical analysis. An understanding of the parts of speech (e.g., the use of “target”
as a verb in an operations order versus “target” as a noun indicating an entity being
engaged by a weapons system).

 Semantic analysis. An understanding of the semantics behind the use of an entity
descriptor (e.g., an HLA class attribute) that clarifies the purpose or use of an entity in a
distributed simulation environment.

 Entity name similarity. If two entities have the same (or nearly the same) name, an
analysis should be performed to determine if they represent the same thing in the
simulation space.

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 2-39

 Entity descriptor name similarity. If two entity descriptors have the same (or nearly the
same) name, an analysis should be performed to determine if they represent the same
characteristic of the entity.

 Semantic/usage similarity. If two entities are used the same way in a distributed
simulation environment, an analysis should be performed to determine if they are
functionally the same or similar.

 An additional option for the use of a gateway would be to select a commercially
available, architecturally neutral middleware/gateway product. While this may seem like the
easiest solution, the trade-off to be considered here is between time/resources and
cost/performance.

2.4.1.2 Consolidation of “Develop Simulation Data Exchange Model” Activities to Support
Multi-architecture Events

MULTI-ARCHITECTURE-SPECIFIC ACTIVITY INPUTS

 Requirements for gateway modifications

o Separation of ground-truth and non-ground-truth data

 Requirements for gateway configuration, including

o Interest management configuration

o DIS heartbeat configuration

o Object identify mapping

o Over-the-wire protocol selection and conversion

MULTI-ARCHITECTURE-SPECIFIC TASKS

 Identify additional gateway configuration and modification requirements

o Resolve metamodel incompatibilities.

o Align SDEM content across architectures.

MULTI-ARCHITECTURE-SPECIFIC ACTIVITY OUTCOMES

 Extension of existing DSEEP Outcome to include multi-architecture SDEMs:

o “Simulation data exchange model for each architecture”

 SDEM mappings

 Updated requirements for gateway modifications

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 2-40

 Updated requirements for gateway configuration

2.4.2 Activity 4.2: Establish Simulation Environment Agreements

There are other operating agreements that should be reached among developers and
managers that are not documented in the SDEM. Such agreements are necessary to establish a
fully consistent, interoperable simulation environment. While the actual process of establishing
agreements among all participants in the development effort begins early in the DSEEP and is
embodied in each of its activities, this may not result in a complete set of formally documented
agreements. It is at this point in the overall process that developers need to explicitly consider
what additional agreements are required and how they should be documented.

2.4.2.1 Issues

2.4.2.1.1 Issue: Agreements to Address Multi-architecture Development

DESCRIPTION

Besides the SDEM, there are a number of different types of agreements that are unique to
multi-architecture development. These agreements are necessary as a result of the differences of
participating simulation architectures. When working in multi-architecture environments,
adjudicating these differences may be very difficult, especially for services that are included in
the architectures but specified and implemented in different ways. Significant problems can
result if such agreements are not formalized and developers operate semi-independently of one
another.

RECOMMENDED ACTION(S)

Differences in the way unique architectures operate should be documented. A set of
agreements should be written to alleviate confusion as to which architecture is responsible for
each aspect of the simulated environment throughout the development of the simulation
environment.

Each architecture community tends to use different tools (in fact, some architectures, like
TENA, identify certain tools in their core specifications), and agreements should be reached that
identify exactly which tools will be used, where in the overall simulation environment those
tools exist, what each tool does, how tool outputs are exchanged across architecture boundaries,
and how different output formats can be interpreted outside the simulation architecture
community that the tool was designed to support. Execution monitors, loggers, and execution
manager applications may have to be extended to receive/interpret data feeds from tools that
support different simulation architectures, and agreements should be established as to the
functionality required and how data will be interchanged. Other types of agreements unique to

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 2-41

multi-architecture environments include scheduling of assets (e.g., personnel, facilities) across
multiple architecture communities and identification of lead integrators and testers when such
activities involve assets from several communities.

Some simulation architectures include services such as reference frame conversion and
data marshalling, while others consider such concerns as important but outside the scope of the
architecture. Procedures for initialization and synchronization (see Issue 2.5.3.1.2 [Initialization
Sequencing and Synchronization]) as well as for save/restore can be quite different across
architectures, potentially requiring some enhancements to the gateways or bridges connecting the
simulation environments and the member applications within them. Agreements that reflect the
resolution of these issues may require that some member applications adopt unfamiliar methods,
which can impact success at integration time.

Recommended best practices include archiving previous versions of federation
agreements for reuse/modification in the future and reusing existing templates whenever
possible; on-going Live-Virtual-Constructive Architecture Roadmap Implementation efforts are
addressing this [Morse et al., 2010].

2.4.2.2 Consolidation of “Establish Simulation Environment Agreements” Activities to
Support Multi-architecture Events

MULTI-ARCHITECTURE-SPECIFIC ACTIVITY INPUTS

 Requirements for gateway modifications

 Requirements for gateway configuration

MULTI-ARCHITECTURE-SPECIFIC TASKS

 Allocate supporting functions (data logging, execution management, etc.) to
previously identified tools.

 Decide on data marshalling scheme.

 Decide on reference frames to be used.

 Establish initialization and synchronization procedures.

MULTI-ARCHITECTURE-SPECIFIC ACTIVITY OUTCOMES

 Within “Simulation environment agreements” (per the DSEEP):

o Allocation of supporting functions to selected support tools

o Reference frame conversion

o Data marshalling

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 2-42

o Scheduling of assets

o Assignment of personnel responsibilities

o Initialization and synchronization procedures

2.4.3 Activity 4.3: Implement Member Application Designs

The purpose of this activity is to implement whatever modifications are necessary to the
member applications to ensure that they can represent assigned objects and associated behaviors
as described in the conceptual model, produce and exchange data with other member
applications as defined by the SDEM, and abide by the established simulation environment
agreements.

2.4.3.1 Issues

2.4.3.1.1 Issue: Nonstandard Algorithms

DESCRIPTION

In some cases, the interoperability protocol associated with simulation environment
architectures standardizes on specific algorithms, e.g., the dead reckoning algorithms in the DIS
protocol. If a simulation environment uses nonstandard algorithms, commercial off-the-shelf
(COTS) and GOTS gateways developed to support the standard protocols will not be able to
properly translate messages in situations that depend on these algorithms (e.g., DIS-HLA
gateways generating heartbeat PDUs for the DIS side).

RECOMMENDED ACTION(S)

Two approaches are available to resolve this issue, both straightforward in concept. The
first approach is to simply avoid the use of nonstandard algorithms, i.e., whenever a multi-
architecture simulation environment uses an algorithm that has been standardized as part of one
of the architectures (such as DIS dead reckoning algorithms), it uses the standard form (or one of
the standard forms) of that algorithm. COTS and GOTS gateways and middleware should
already be able to work with the standard algorithms [Valle et al., 2006]. It will be necessary to
examine member applications from all of the linked architectures to ensure their conformance to
this approach.

There may, however, be specialized circumstances when a nonstandard algorithm is
essential to a particular simulation environment. For example, a simulation environment with a
large number of simulated entities that move in a specific way that is not well predicted by any
of the standard dead reckoning algorithms but can be well predicted by a custom dead reckoning
algorithm, or special radio propagation effects modeling based on nonstandard transmitter
antenna location values [Ross and Clark, 2005]. In such circumstances, the alternative approach

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 2-43

is to modify the gateways and middleware to support the nonstandard algorithm. Gateways and
middleware might incorporate the nonstandard algorithms and apply them during the translation
process [Lin and Woodyard, 1996]. In this approach, where the gateway or middleware needs to
be modified, the ability (or lack thereof) to make these modifications (as a result of
considerations such as source code availability) becomes a consideration in selecting the tool.

2.4.3.2 Consolidation of “Implement Member Application Designs” Activities to Support
Multi-architecture Events

MULTI-ARCHITECTURE-SPECIFIC ACTIVITY INPUTS

 Available algorithms for implementation

 Selected common communications middleware

MULTI-ARCHITECTURE-SPECIFIC TASKS

 Select algorithms for implementation.

MULTI-ARCHITECTURE-SPECIFIC ACTIVITY OUTCOMES

 None beyond those called for in the DSEEP

2.4.4 Activity 4.4: Implement Simulation Environment Infrastructure

The purpose of this activity is to implement, configure, and initialize the infrastructure
necessary to support the simulation environment and verify that it can support the execution and
intercommunication of all member applications. This involves the implementation of the network
design (e.g., WANs, LANs), the initialization and configuration of the network elements (e.g.,
routers, bridges), and the installation and configuration of supporting software on all computer
systems. This also involves whatever facility preparation is necessary to support integration and
test activities.

2.4.4.1 Issues

2.4.4.1.1 Issue: Live Entity TSPI Update Rates

DESCRIPTION

In TENA, live entities are not dead reckoned, so they require frequent updates of their
Time Space Position Information (TSPI). A typical update rate is approximately 10 updates per
second. Telemetry systems used to track live entity positions and generate TSPI updates may
produce those updates at a faster rate. By comparison, dead reckoning can be used in DIS and
HLA to reduce entity TSPI update rates and thereby reduce network traffic. When TENA is

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 2-44

linked with DIS or HLA, live-to-virtual network traffic as a result of TENA live entity TSPI
updates can become excessive, resulting in undesirable network and data processing loads.

RECOMMENDED ACTION(S)

A lack of reliable velocity and acceleration data from instrumentation sources and the
resulting gaps in TSPI data should be smoothed out to reduce visual jitter, particularly in training
environments. As with DIS and HLA data, TENA data should be dead reckoned to support the
simulation environment requirements and present an appropriate track picture to the simulation
environment operator. While a basic dead-reckoning algorithm has been successfully used, it is
suggested that the least-squares fit method, a parabolic filter, or Kalman filter methods be
applied to generate smoother TSPI-based motion trajectories for live air platforms being
represented in a virtual environment [Marsden et al., 2009].

2.4.4.1.2 Issue: Network Design, Configuration, and Management

DESCRIPTION

Multi-architecture simulation environments introduce network-related complexities as a
result of the variety of network port, protocol, and performance requirements used. Designing
and configuring the network to support the various data formats and transport mechanisms used
in the multi-architecture simulation environment requires significant planning, integration, and
testing over and above single-architecture simulation environments.

RECOMMENDED ACTION(S)

Defining and documenting all of the ports and protocols used in a multi-architecture
simulation environment is critical to the success of the environment. The Joint Mission
Environment Test Capability (JMETC) has defined a standard format for representing the
necessary ports and protocols down to the individual machine at each participating site in a
multi-architecture environment that includes

 Member application name

 Application protocol over the WAN (TENA, Link16, Variable Message Format
[VMF], etc.)

 Network protocol (IP/TCP/UDP)

 Network port number(s)/range

 Direction (in/out/both)

 Destination IP (or multicast group address)

 Member application description

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 2-45

 Additional information

In addition to addressing the ports and protocols required to support multi-architecture
simulation environments, additional performance-related decisions should be made with respect
to how the member applications are partitioned across the WAN and/or LAN. Over-the-wire
simulation protocols should be selected in order to maximize performance over a WAN. For
instance, JMETC has mandated that TENA be the only simulation protocol used over the WAN
because of its network efficiency. In multi-architecture environments where TENA applications
participate with other architectures such as DIS and HLA, all simulation data is converted to
TENA at each site before being transmitted over the WAN. One exception to this technique is
the use of tactical message data that should be left in its native format to ensure correct
transmission reception in a native format.

2.4.4.2 Consolidation of “Implement Simulation Environment Infrastructure” Activities to
Support Multi-architecture Events

MULTI-ARCHITECTURE-SPECIFIC ACTIVITY INPUTS

 Requirements for gateway modifications

 Requirements for gateway configuration

 Architecture neutral data exchange model

 SDEM for each architecture

 Data exchange model mappings

MULTI-ARCHITECTURE-SPECIFIC TASKS

 Transform data exchange model mappings into gateway configurations.

 Modify and configure gateways to address prior requirements; in addition,

o Implement TSPI smoothing.

 Within “Implement infrastructure design” (per the DSEEP)

o Configure ports and protocols to implement the network architecture.

MULTI-ARCHITECTURE-SPECIFIC ACTIVITY OUTCOMES

 Modified and configured gateways

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 2-46

2.5 STEP 5: INTEGRATE AND TEST SIMULATION ENVIRONMENT

The purpose of this step of the DSEEP is to plan the execution of the simulation
environment, establish all required interconnectivity between member applications, and test the
simulation environment prior to execution.

2.5.1 Activity 5.1: Plan Execution

The main purpose of this activity is to fully describe the execution environment and
develop an execution plan. For instance, performance requirements for individual member
applications and for the larger simulation environment along with salient characteristics of host
computers, operating systems, and networks that will be used in the simulation environment
should all be documented at this time.

2.5.1.1 Issues

2.5.1.1.1 Issue: Multi-architecture Planning Considerations

DESCRIPTION

 Multi-architecture development implies special consideration for execution planning
beyond that normally required for a single-architecture simulation environment. Failure to
account for the additional complications of a multi-architecture simulation environment will
result in an unrealistic execution plan.

RECOMMENDED ACTION(S)

The execution plan should address both the technical and soft (i.e., non-technical) factors
associated with the operation of a multi-architecture environment. Examples of technical factors
include the development of startup and shutdown procedures that are compatible with all of the
architectures in use and a method for reconciling the different mechanisms used by the different
architectures to pass large amounts of data over the simulation infrastructure. Examples of soft
factors include a procedure for training personnel to work with unfamiliar software and
operational procedures and the scheduling of personnel and facilities across users of multiple
architectures [e.g., Williams and Smith, 2007]. The simulation environment agreements often
provide a good basis for identifying the considerations that need to be addressed in an execution
plan for a multi-architecture simulation environment.

2.5.1.1.2 Issue: Distributed Simulation Environment Integration Testing

DESCRIPTION

The integration and testing of a multi-architecture simulation environment is likely to be
a highly complex undertaking as a result of the diversity in experience, knowledge, and skills of

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 2-47

the simulation environment development team. The amount of work required to integrate and test
a multi-architecture simulation environment may surpass normal resource planning estimates and
result in the overloading of application developers during simulation environment integration test
events.

RECOMMENDED ACTION(S)

A key for successfully performing integration testing is to reduce the complexity of the
required testing. An integration testing strategy successfully used in single-architecture
simulation environments is to plan for a spiral series of integration tests that increase in
complexity. Simulation environment developers should first ensure that member applications
operate satisfactorily in a single-architecture environment before attempting to operate across
architecture boundaries. Integration testing should begin as soon as possible to allow time to
troubleshoot unforeseen problems that are likely to occur during the integration of the multi-
architecture simulation environment.

2.5.1.2 Consolidation of “Plan Execution” Activities to Support Multi-architecture Events

MULTI-ARCHITECTURE-SPECIFIC ACTIVITY INPUTS

 None beyond those called for in the DSEEP

MULTI-ARCHITECTURE-SPECIFIC TASKS

 Identify technical and soft factors associated with multi-architecture environments.

 Refine/augment the execution plan to include a spiral series of integration tests.

MULTI-ARCHITECTURE-SPECIFIC ACTIVITY OUTCOMES

 None beyond those called for in the DSEEP

2.5.2 Activity 5.2: Integrate Simulation Environment

The purpose of this activity is to bring all of the member applications into a unified
operating environment. This requires that all hardware and software assets are properly installed
and interconnected in a configuration that can support the SDEM and simulation environment
agreements.

2.5.2.1 Issues

No multi-architecture issues have been identified for this activity. However, the modified
and configured gateways produced in Activity 4.4 (Implement Simulation Environment
Infrastructure) are multi-architecture-specific inputs to this activity.

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 2-48

MULTI-ARCHITECTURE-SPECIFIC ACTIVITY INPUTS

 Modified and configured gateways

MULTI-ARCHITECTURE-SPECIFIC TASKS

 None beyond those called for in the DSEEP

MULTI-ARCHITECTURE-SPECIFIC ACTIVITY OUTCOMES

 None beyond those called for in the DSEEP

2.5.3 Activity 5.3: Test Simulation Environment

The purpose of this activity is to verify that all of the member applications can
interoperate to the degree required to achieve core objectives. Distributed applications are tested
at three levels:

 Member application testing

 Integration testing

 Interoperability testing

2.5.3.1 Issues

2.5.3.1.1 Issue: Complexities of Testing in a Multi-Architecture Environment

DESCRIPTION

During simulation environment testing, earlier agreements on resolutions of multi-
architecture issues and any subsequent solutions should be properly tested. The multi-
architecture solutions may include applications representing LVC assets as well as applications
that support environment instrumentation, control, data management, and interoperability.
Testing of the full multi-architecture simulation environment should be performed at the system
level to ensure that these solutions meet performance and functionality requirements. As with
single-architecture environments, inadequate testing can fail to discover simulation environments
that have not properly met the requirements.

RECOMMENDED ACTION(S)

The additional complexities of a multi-architecture environment require more detailed
and specific testing to ensure that the exchange of data across architectures is valid. It is critically
important that all data be tested for correctness when it is published or consumed across
architectural boundaries. Tools to support this interface verification could be found in a gateway

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 2-49

itself or in a data analysis tool that reads gateway and/or application log data and provides
reports based on the data at key interface points.

While each architecture may have its own unique tools to test member applications and
their interfaces, the communities should come together as early as possible to lay out a test
strategy based on available tools. This strategy should start to take shape as early as DSEEP Step
3 during the design of the simulation environment.

2.5.3.1.2 Issue: Initialization Sequencing and Synchronization

DESCRIPTION

Initialization in a distributed simulation is a non-trivial and sequential process. For
example, in HLA, the federation execution must be created before federates can join and objects
can be registered. Explicit sequencing and synchronization of the initialization actions of
member applications in a simulation environment is frequently needed to ensure that each
member application is ready for the next action in the initialization process. In a multi-
architecture simulation environment, these issues may be exacerbated. Initialization sequencing
needs may be greater because, for example, mechanisms used to link the multiple architectures,
such as gateways or middleware, may require the architectures’ executions to be started in a
specific order. Such a sequencing constraint may be difficult to enforce. Moreover, explicit
initialization synchronization may be more difficult in a multi-architecture simulation
environment because the requisite synchronization mechanisms and messages (e.g., HLA
synchronization services) are more likely to be architecture specific and less likely to be directly
translatable across the architectures’ protocols than more generic operations such as object
attribute updates.

RECOMMENDED ACTION(S)

Some architectures offer protocol services that can be used, with varying degrees of
effort, for initialization sequencing and synchronization. For example, synchronization points
were used for this purpose in one HLA simulation environment, although they did not function
as initially expected, necessitating a carefully planned common multi-phase initialization process
that included planned pauses to allow initialization operations to complete [Nielsen, 1999].

If the protocol services of one architecture are used to coordinate initialization across
architectures in a multi-architecture simulation environment, the mechanism used to link the
architectures (such as a gateway or middleware) should be configured or modified to translate
those services from one architecture to the other. If synchronization services cannot be translated
by the mechanism used to link the architectures, techniques outside of the simulation
environment execution, such as manual control, may be used. Even if they can be translated,
protocol services can only implement synchronization constraints that are known. To that end,

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 2-50

specific attention should be given to initialization when planning the simulation environment
execution and testing the simulation environment. Any synchronization constraints or
initialization sequence decisions should have been documented in the simulation environment
agreements. These initialization and synchronization services and procedures should be
thoroughly tested at this point.

Depending on the needs of the specific simulation environment, software tools designed
to monitor and control simulation environment execution (e.g., the TENA tools Starship and
StarGen [TENA Software Development Activity (SDA), 2008]) may be useful in sequencing and
synchronizing initialization. Finally, to avoid these issues, member applications should be
designed and implemented to be as independent of initialization sequence as possible [Nielsen,
1999].

2.5.3.1.3 Issue: Control of Multi-architecture Simulation Environment Execution

DESCRIPTION

No single set of capabilities exists to control the execution of a multi-architecture
simulation environment. Some distributed simulation architectures have more extensive
capabilities for controlling and coordinating the execution of a simulation environment (e.g.,
HLA Federation Management services) than others. Ensuring that a multi-architecture simulation
environment can be executed as an integrated collective will require the development of specific
operational procedures.

RECOMMENDED ACTION(S)

The control of a multi-architecture simulation environment will be manual by necessity.
Specific user guidance will be required in order for the operators to monitor the health of the
member applications and infrastructure as well as control the execution of the event scenario.
The specific user guidance should be tested during the integration and testing of the multi-
architecture simulation environment so that the record runs of the simulation environment can
occur without incident.

2.5.3.1.4 Issue: Data Collection Configuration and Testing

DESCRIPTION

A central characteristic of multi-architecture simulation environments is the production of
data of different formats. Various mechanisms of network protocol utilization, architecture rule
sets, and locations of data collector(s), and the ability to correctly integrate architecture-unique
data into a common event database for real-time or post-event analysis, may make an initial data
collection plan impractical once the multi-architecture simulation environment has been
integrated.

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 2-51

RECOMMENDED ACTION(S)

This is the last opportunity the simulation environment developers have to test their data
collection plans prior to the multi-architecture event execution. During testing, data collection
and integration procedures should be exercised, with special attention paid to the integration of
data across architectural boundaries.

2.5.3.2 Consolidation of “Test Simulation Environment” Activities to Support Multi-
architecture Events

MULTI-ARCHITECTURE-SPECIFIC ACTIVITY INPUTS

 Architecture-specific procedure for initialization and synchronization

MULTI-ARCHITECTURE-SPECIFIC TASKS

 Test validity of data exchanges across architectural boundaries.

 Test initialization and synchronization procedures.

 Test data collection procedures and tools.

MULTI-ARCHITECTURE-SPECIFIC ACTIVITY OUTCOMES

 Within “Tested simulation environment” (per the DSEEP)

o Assessment of the validity of cross-architecture data exchanges

o Modified and configured gateways

o Updated user guidance

2.6 STEP 6: EXECUTE SIMULATION

The purpose of this step is to execute the integrated set of member applications (i.e., the
“simulation”) and to pre-process the resulting output data.

2.6.1 Activity 6.1: Execute Simulation

The purpose of this activity is to exercise all member applications of the simulation
environment in a coordinated fashion over time to generate required outputs and thus achieve
stated objectives. The simulation environment should have been tested successfully before this
activity can begin.

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 2-52

2.6.1.1 Issues

2.6.1.1.1 Issue: Verifying Multi-architecture Execution

DESCRIPTION

Verifying the satisfaction of simulation environment requirements is difficult once the
event execution has begun. No single set of tools is available to monitor event execution across a
multi-architecture simulation environment.

RECOMMENDED ACTION(S)

Some architectures possess an inherent capability for fault detection/resolution/tolerance.
However, different execution managers may provide an uneven picture of the state of the
execution. A consistent and complete perception of execution state is critical for producing
desired results. It is also necessary for results validation (i.e., for supporting required VV&A
activities). The recommended action is to task different groups of people to monitor the event
execution and report their observations in a timely manner to event execution management to
enable corrective actions to be taken if required.

2.6.1.2 Consolidation of “Execute Simulation” Activities to Support Multi-architecture
Events

MULTI-ARCHITECTURE-SPECIFIC ACTIVITY INPUTS

 None beyond those called for in the DSEEP

MULTI-ARCHITECTURE-SPECIFIC TASKS

 Monitor execution.

 Report observations.

MULTI-ARCHITECTURE-SPECIFIC ACTIVITY OUTCOMES

 None beyond those called for in the DSEEP

2.6.2 Activity 6.2: Prepare Simulation Environment Outputs

The purpose of this activity is to pre-process the output collected during the execution, in
accordance with the specified requirements, prior to formal analysis of the data. This may
involve the use of data reduction techniques to reduce the quantity of data to be analyzed and to
transform the data to a particular format.

2.6.2.1 Issues

No multi-architecture issues have been identified for this activity.

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 2-53

2.7 STEP 7: ANALYZE DATA AND EVALUATE RESULTS

The purpose of this step of the DSEEP is to analyze and evaluate the data acquired during
the execution of the simulation environment and to report the results back to the user/sponsor.
This evaluation is necessary to ensure that the simulation environment fully satisfies the
requirements of the user/sponsor.

2.7.1 Activity 7.1: Analyze Data

The purpose of this activity is to analyze the execution data. This data may be supplied
using a range of different media (e.g., digital, video, audio), and appropriate tools and methods
will be required for analyzing the data. These may be COTS or GOTS tools or specialized tools
developed for a specific simulation environment. The analysis methods used will be specific to a
particular simulation environment and can vary between simple observations (e.g., determining
how many targets have been hit) and the use of complex algorithms (e.g., regression analysis or
data mining).

2.7.1.1 Issues

No multi-architecture issues have been identified for this activity.

2.7.2 Activity 7.2: Evaluate and Feedback Results

There are two main evaluation tasks in this activity. In the first task, the derived results
from the previous activity are evaluated to determine if all objectives have been met. This
requires a retracing of execution results to the measurable set of requirements originally
generated during conceptual analysis and refined in subsequent DSEEP steps. The second
evaluation task in this activity is to assess all products generated in terms of their reuse potential
within the domain or broader user community. Those products identified as having such reuse
potential should be stored in an appropriate archive.

2.7.2.1 Issues

2.7.2.1.1 Issue: Multi-architecture Simulation Environment Assessment

DESCRIPTION

In evaluating the derived results of the simulation environment execution in a multi-
architecture environment, the challenge is to determine if all objectives have been met. The use
of a multi-architecture design introduces another factor to consider in the event that certain
objectives were not met: Was the multi-architecture design itself the reason for a discrepancy
between the objectives and outcomes?

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page 2-54

RECOMMENDED ACTION(S)

Assessment of the performance of a multi-architecture simulation environment is heavily
dependent upon the planning documentation generated during the multi-architecture simulation
environment development process. Problems always occur during event execution because a
simulation environment is a complex composition of computer hardware components, software
libraries, and networking resources. Execution problems are likely to fall into one of three
categories: (1) internal to a member application, (2) internal to a single-architecture
implementation, and (3) across architecture implementation boundaries. A multi-architecture
simulation environment staff requires insight and knowledge beyond that required to operate a
single-architecture simulation environment to accurately troubleshoot problems. The normal
tendency is to attribute any problem that may arise to the newest, and probably least understood,
component of a simulation environment. The multi-architecture simulation environment staff can
assess the impact of each problem once the true cause of a problem has been isolated. The multi-
architecture simulation environment staff can provide feedback and make recommendations for
follow-up activities and remedies to the user/sponsor to complete the simulation environment
performance assessment. In addition, a decision needs to be made as to what should be archived
from the recently executed simulation environment event and when it should be archived.

2.7.2.2 Consolidation of “Evaluate and Feedback Results” Activities to Support Multi-
architecture Events

MULTI-ARCHITECTURE-SPECIFIC ACTIVITY INPUTS

 None beyond those called for in the DSEEP

MULTI-ARCHITECTURE-SPECIFIC TASKS

 Assess performance of multi-architecture simulation environment and categorize
problems:

o Internal to member application.

o Internal to a single-architecture implementation.

o Across architecture implementation boundaries.

MULTI-ARCHITECTURE-SPECIFIC ACTIVITY OUTCOMES

 None beyond those called for in the DSEEP

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page A-1

APPENDIX A. REFERENCES AND BIBLIOGRAPHY

Bachman, J. T., and P. Gustavson. “Object Model Mapping and Inspection: The Key to
Adaptable Federates,” in Proceedings of the Spring 2000 Simulation Interoperability
Workshop, Orlando, FL, 26–30 March 2000.

Balci, O. “Verification, Validation, and Testing,” in Handbook of Simulation: Principles,
Methodology, Advances, Applications, and Practice, J. Banks (editor), John Wiley & Sons,
New York, pp. 335–393, 1998.

Baumgartner, S., E. Schmidt, S. Olson, and R. Reynolds. “Distribution of the Gridded
Environmental Data in HLA/RTI and DIS++,” in Proceedings of the 15th Workshop on
Standards for the Interoperability of Defense Simulations, Orlando, FL, 16–20 September
1996.

Bentley, T., K. Larsen, A. Roden, J. Fann, G. Gonzalez, K. Roose, G. Tackett, and J. Van
Bebber. “HLA Lessons Learned from the RDEC Federation Calibration Experiment,” in
Proceedings of the Spring 2002 Simulation Interoperability Workshop, Orlando, FL, 10–15
March 2002.

Bizub, W., and D. Cutts. “Live Virtual Constructive (LVC) Architecture Interoperability
Assessment,” Interservice/Industry Training, Simulation, and Education Conference (2007),
Paper #7045, Orlando, FL, 26–29 November 2007.

Bizub, W., D. Bryan, and E. Harvey. “The Joint Live Virtual Constructive Data Translator
Framework – Interoperability for a Seamless Joint Training Environment,” in Proceedings of
2006 Simulation Technology and Training Conference (SimTecT 2006), Melbourne
Australia, 29 May–1 June 2006.

Bizub, W., J. Wallace, A. Ceranowicz, and E. Powell. “Next-Generation Live Virtual
Constructive Architecture Framework (LVC AF),” in Proceedings of the 2009
Interservice/Industry Training, Simulation & Education Conference, Orlando, FL, 30
November–3 December 2009.

Blacklock, J., and L. Zalcman. “A Royal Australian, Distributed Simulation, Training and
Experimentation, Synthetic Range Environment,” Interservice/Industry Training, Simulation,
and Education Conference (2007), Paper #7018, Orlando, FL, 26–29 November 2007.

Bowers, A., and D. Cutts. “Composing a Joint Federation Object Model,” Interservice/Industry
Training, Simulation, and Education Conference (2007), Paper #7421, Orlando, FL, 26–29
November 2007.

Carr, F. H., and J. D. Roberts, “Incorporating Command and Control (C2) into the High Level
Architecture (HLA): An Architecture for Realistic Communications Effects,” in Proceedings
of the Fall 1997 Simulation Interoperability Workshop, Orlando, FL, 8–12 September 1997.

Carlton, B., and R. Scrudder. “Synchronizing C2 Systems StartEx Data in Simulations
UNIVERSITY XXI,” in Proceedings of the Fall 2001 Simulation Interoperability Workshop,
Orlando, FL, 9–14 September 2001.

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page A-2

Ceranowicz, A., M. Torpey, B. Helfinstine, and J. Evans. “Reflections on Building the Joint
Experimental Federation,” in Proceedings of the 2002 Interservice/Industry Training,
Simulation, and Education Conference, Orlando, FL, 2–5 December 2002, pp. 1349–1359.

Choi, D., H. Bang, and C. Cho. “Service-Oriented Distributed Simulation Using RESTful Web
Services,” in Proceedings of the Fall 2008 Simulation Interoperability Workshop, Orlando,
FL, 15–19 September 2008.

Cox, A., and M. D. Petty. “Use of DIS Simulation Management (SIMAN) in HLA Federations,”
Proceedings of the Spring 1998 Simulation Interoperability Workshop, Orlando, FL, 9–13
March 1998.

Cox, A., D. D. Wood, and M. D. Petty. “Gateway Performance Using RTI 1.0,” in Proceedings
of the Fall 1997 Simulation Interoperability Workshop, Orlando, FL, 8–12 September 1997.

Cox, A., D. D. Wood, M. D. Petty, and K. A. Juge. “Integrating DIS and SIMNET Simulations
into HLA with a Gateway,” in Proceedings of the 15th Workshop on Standards for the
Interoperability of Defense Simulations, Orlando, FL, 16–20 September 1996, pp. 517–525.

Distributed Simulation Engineering and Execution Process, IEEE P1730 (Draft 4), 2009.

Cutts, D., P. Gustavson, and J. Ashe. “LVC Interoperability via Application of the Base Object
Model (BOM),” in Proceedings of the 2006 Interservice/Industry Training, Simulation, and
Education Conference, Orlando, FL, 4–7 December 2006, pp. 637–644.

Dorsch, M. D. “Achieving Scalability within High Level Architecture Run Time
Infrastructures,” in Proceedings of the Fall 2001 Simulation Interoperability Workshop,
Orlando, FL, 9–14 September 2001.

Ferenci, S. L., and R. Fujimoto. “RTI Performance on Shared Memory and Message Passing
Architectures,” in Proceedings of the Spring 1999 Simulation Interoperability Workshop,
Orlando, FL, 14–19 March 1999.

Gallo, A. W., J. P. Glass, C. Frye, R. Douglass, C. Velez, J. Buckley, and L. Cipolla. “ASW
VAST MRT3: The Tip of the Virtual Spear,” in Proceedings of the 2006
Interservice/Industry Training, Simulation, and Education Conference, Paper #2563,
Orlando, FL, 4–7 December 2006, pp. 148–158.

Gminder, R., M. D. Myjak, R. E. Giroux, J. K. Wicks, H. Morelos, J. Cryer, R. A. DiMicco, S.
T. Sharp, and M. B. H. Pettit. “DIS to HLA Integration, A Comparative Evaluation,” in
Proceedings of the 15th Workshop on Standards for the Interoperability of Defense
Simulations, Orlando, FL, 16–20 September 1996.

Griffin, S. P., E. H. Page, C. Z. Furness, and M. C. Fisher. “Providing Uninterrupted Training to
the Joint Training Confederation (JTC) Audience During Transition to the High Level
Architecture,” in Proceedings of the Fall 1997 Simulation Interoperability Workshop,
Orlando, FL, 8–12 September 1997.

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page A-3

Gustavsson, P., M. Lubera, J. Blomberg, H. Lind, and J. Wemmergard. “Lessons Learned from
the Implementation of a Battle Management Language in a General Scenario Editor,” in
Proceedings of the Fall 2009 Simulation Interoperability Workshop, Orlando, FL, 21–25
September 2009.

Harkrider, S. M., and M. D. Petty. “Results of the HLA Platform Proto-Federation Experiment,”
in Proceedings of the 15th Workshop on Standards for the Interoperability of Defense
Simulations, Orlando, FL, 16–20 September 1996, pp. 441–450.

Hougland, E. S., and D. J. Paterson. “Data Distribution Management (DDM) Issues for HLA
Implementations,” in Proceedings of the Spring 2000 Simulation Interoperability Workshop,
Orlando, FL, 26–30 March 2000.

Hudgins, G. “Test and Training Enabling Architecture (TENA), An Important Component in
Joint Mission Environment Test Capability (JMETC),” in Proceedings of the 25th Annual
National Defense Industrial Association Test & Evaluation Conference, Atlantic City, NJ, 2–
5 March 2009.

Jense, H., N. Kuijpers, and R. Elias. “Electronic Battlespace Facility for Research, Development
and Engineering,” in Proceedings of the Fall 1997 Simulation Interoperability Workshop,
Orlando, FL, 8–12 September 1997.

Khimeche, L. “RESIDENT G2, HLA Distributed Interactive Simulations Framework for Forces
Readiness,” in Proceedings of the Fall 2001 Simulation Interoperability Workshop, Orlando,
FL, 9–14 September 2001.

Lacetera, J., and E. Torres. “Evolution to a Common C4ISR M&S Environment via a
Communications Effects Federate Approach,” in Proceedings of the Fall 1997 Simulation
Interoperability Workshop, Orlando, FL, 8–12 September 1997.

Lammers, C., J. Steinman, and M. Valinski. “Evaluating OpenMSA/OSAMS for Chemical and
Biological Defense,” in Proceedings of the Spring 2008 Simulation Interoperability
Workshop, Providence, RI, 14–18 April 2008.

Lammers, C. N., M. E. Valinski, and J. S. Steinman. “Multiplatform Support for the
OpenMSA/OSAMS Reference Implementation,” in Proceedings of the Spring 2009
Simulation Interoperability Workshop, San Diego-Mission Valley, CA, 23–27 March 2009.

Lasch, T., and A. Paschal. “160th Special Operations Aviation Regiment (Airborne) (SOAR(A))
Synthetic Theater of War-Architecture (STOW-A): Simulation for Mission Rehearsal,” in
Proceedings of the Spring 2000 Simulation Interoperability Workshop, Orlando, FL, 26–30
March 2000.

LeSueuer, K. G., S. Millich, and M. L. Stokes, “Lessons Learned: Joint Battlespace Dynamic
Deconfliction (JBD2) Distributed Test Event,” in Proceedings of the 2009 ITEA Live-
Virtual-Constructive Conference, El Paso, TX, 12–15 January 2009.

Lin, K., J. Blair, and J. Woodyard. “Study on Dead Reckoning Translation in High Level
Architecture,” in Proceedings of the 15th Workshop on the Interoperability of Distributed
Interactive Simulation, Orlando, FL, 16–20 September 1996.

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page A-4

Lorenzo, M., M. Muuss, M. Caruso, and B. Riggs. “RTI Latency Testing over the Defense
Research and Engineering Network,” in Proceedings of the Spring 2001 Simulation
Interoperability Workshop, Orlando, FL, 25–30 March 2001.

Lutz, R. “LVC Common Capabilities Workshop", Johns Hopkins University Applied Physics
Laboratory, Laurel, MD, 4–5 November 2009.

Lutz, R. “LVCAR Implementation; Common Gateways and Bridges Characterization Report,”
Johns Hopkins University Applied Physics Laboratory, Laurel, MD, May 2010.

MÄK Technologies, MÄK and TENA, How MÄK Products Support the Test and Training
Enabling Architecture, November 4 2009, online at www.mak.com/pdfs/wp_TENA-
FAQ.pdf, accessed 27 March 2010.

Macannuco, D., P. Wickis, D. Wilbert, and W. Civinskas. “FOM Agility and SNE,” in
Proceedings of the Spring 2000 Simulation Interoperability Workshop, Orlando, FL, 26–30
March 2000.

Mann, J., A. York, and B. Shankle. “Integrating Physics-Based Damage Effects in Urban
Simulation,” in Proceedings of the 2004 Interservice/Industry Training, Simulation, and
Education Conference, Orlando, FL, 6–9 December 2004, pp. 653–662.

Marsden, C., M. Aldinger, and B. Leppard. “Toward Interoperability between Test and Training
Enabling Architecture (TENA) and Distributed Interactive Simulation (DIS) Training
Architectures,” in Proceedings of the 2009 Interservice/Industry Training, Simulation &
Education Conference, Orlando, FL, 30 November–3 December 2009.

McConnell, J., and J. Vogel. “High Level Architecture (HLA) Compliant Maneuver Control
System (MCS) Interface to Distributed Interactive Simulation (DIS) Compliant Tactical
Internet Model (TIM),” in Proceedings of the Fall 1997 Simulation Interoperability
Workshop, Orlando, FL, 8–12 September 1997.

Mealy, G. L., L. E. Mabius, I. L. Cooper, E. A. Kelley, T. Stanzione, and M. A. Aucoin.
“Analysis of the Applicability of HLA/RTI to Distributed Mission Training,” in Proceedings
of the Spring 1999 Simulation Interoperability Workshop, Orlando, FL, 14–19 March 1999.

Morganthaler, M., and J. W. Shockley. “RTI Performance in Sending High Volume Data,” in
Proceedings of the Fall 1998 Simulation Interoperability Workshop, Orlando, FL, 14–18
September 1998.

Morganthaler, M., and J. W. Shockley. “RTI Performance in Sending High Volume Data: An
Update–The Development of an RTI VTC Capability,” in Proceedings of the Spring 1999
Simulation Interoperability Workshop, Orlando, FL, 14–19 March 1999.

Morse, K. L. “LVCAR Implementation; Federation Agreements Template,” Johns Hopkins
University Applied Physics Laboratory, Laurel, MD, May 2010.

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page A-5

Morse, K. L. and J. S. Steinman. “Data Distribution Management in the HLA:
Multidimensional Regions and Physically Correct Filtering,” in Proceedings of the Spring
1997 Simulation Interoperability Workshop, Orlando, FL, 3–7 March 1997. Moulding, M.
R., and A. R. Newton. “Automated Consistency Checking of HLA Specifications to Support
the Verification of Synthetic Environment,” in Proceedings of the Spring 1998 Simulation
Interoperability Workshop, Orlando, FL, 9–13 March 1998.

Moulton, T. A., K. D. Snively, P. Chappell, K. A. Shaffer, M. K. Ahmad, S. S. Bishop, and P. M.
Jacobs. “Advantages of Switched Ethernet Over Shared Ethernet Using IP Multicast in DIS
and HLA Exercises,” in Proceedings of the Fall 1998 Simulation Interoperability Workshop,
Orlando, FL, 14–18 September 1998.

Myjak, M. D., and S. T. Sharp. “Virtual Reality Name Service (VRNS) – A Position Paper,” in
Proceedings of the Fall 2001 Simulation Interoperability Workshop, Orlando, FL, 9–14
September 2001.

Myjak, M. D., R. E. Giroux, and S. Sharp. “DIS to HLA Integration, A Comparative Analysis,”
in Proceedings of the Spring 1997 Simulation Interoperability Workshop, Orlando, FL, 3–7
March 1997.

Nielsen, J. “Federation Initialization and the RTI 1.3: Lessons from the JTLS-GCCS-NATO
Federation,” in Proceedings of the Spring 1999 Simulation Interoperability Workshop,
Orlando, FL, 14–19 March 1999.

Nielsen, J., and M. Salisbury. “Challenges in Developing the JTLS-GCCS-NC3A Federation,” in
Proceedings of the Fall 1998 Simulation Interoperability Workshop, Orlando, FL, 14–18
September 1998.

O’Connor, M. J., J. DiCola, J. Sorroche, J. C. Lane, D. Lewis, and R. Norman. “A Mixed
Architecture for Joint Testing,” in Proceedings of the Spring 2006 Simulation
Interoperability Workshop, Huntsville, AL, 2–7 April 2006.

Papay, M., and M. Aldinger. “A Distributed Systems Engineering Environment for Simulation
Based Acquisition,” Interservice/Industry Training, Simulation, and Education Conference
(2004), Paper #1673, Orlando, FL, 6–9 December 2004.

Paterson, D. J., E. Anschuetz, M. Biddle, D. Kotick, and T. Nguyen. “An Approach to HLA
Gateway/Middleware Development,” in Proceedings of the Spring 1998 Simulation
Interoperability Workshop, Orlando, FL, 9–13 March 1998.

Petty, M. D. “Verification, Validation, and Accreditation,” in Modeling and Simulation
Fundamentals: Theoretical Underpinnings and Practical Domains, J. A. Sokolowski and C.
M. Banks (editors), John Wiley & Sons, Hoboken, NJ, 2010.

Petty, M. D., M. A. Hunt, and K. C. Hardis. “Terrain Correlation Measurement for the HLA
Platform Proto-Federation,” in Proceedings of the 15th Workshop on Standards for the
Interoperability of Defense Simulations, Orlando, FL, 16–20 September 1996, pp. 691–702.

Purdy, S. G., and R. D. Wuerfel. “A Comparison of HLA and DIS Real-Time Performance,” in
Proceedings of the Spring 1998 Simulation Interoperability Workshop, Orlando, FL, 9–13
March 1998.

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page A-6

Rieger, L. A., and J. Lewis. “Integrated Middleware for Flexible DIS and HLA Interoperability,”
in Proceedings of the 2006 Interservice/Industry Training, Simulation, and Education
Conference, Paper #2701, Orlando, FL, 4–7 December 2006, pp. 622–629.

Ross, P., and P. Clark, Recommended Acceptance Testing Procedure for Network Enabled
Training Simulations, Defence Science and Technology Organisation, DSTO-TR-1767,
Australian Government, Department of Defence, August 2005.

Rothstein, L. W., G. M. Santos, and W. M. Canto. “Report on a Live Range Exercise: The
Synthetic Environment Tactical Integration,” in Proceedings of the Fall 1998 Simulation
Interoperability Workshop, Orlando, FL, 14–18 September 1998.

Rumple, B., and R. Vila. “Distributed Training in Europe,” Interservice/Industry Training,
Simulation, and Education Conference (2007), Paper #7219, Orlando, FL, 26–29 November
2007.

Sauerborn, G. C. “Communicating Platform Vulnerability in a Platform Environment,” in
Proceedings of the Fall 1998 Simulation Interoperability Workshop, Orlando, FL, 14–18
September 1998.

Simulation Interoperability Standards Committee of the IEEE Computer Society, IEEE Standard
for Modeling and Simulation (M&S) High Level Architecture (HLA)–Federate Interface
Specification, IEEE Std 1516.1-2000, Institute of Electrical and Electronic Engineers, New
York, September 2000.

Specht, S. A. “Federation Management Tool Development for the ALSP-HLA Transition,” in
Proceedings of the Fall 1997 Simulation Interoperability Workshop, Orlando, FL, 8–12
September 1997.

TENA Software Development Activity, “Advanced C2 Software Application, Starship II, Uses
TENA for Distributed Test Environment,” TENA Fact Sheet, online at https://www.tena-
sda.org/display/intro/Documentation, accessed 27 March 2010.

Testa, J., M. Aldinger, K. Wilson, and C. Carnana. “Achieving Standardized Live-Virtual
Constructive Test and Training Interactions via TENA,” Interservice/Industry Training,
Simulation, and Education Conference (2006), Paper #2900, Orlando, FL, 4–7 December
2006.

Turnista, C., A. Tolk, and R. Kewley. “Exploring Primitives of Meaning in Support of
Interoperability,” in Proceedings of the Fall 2009 Simulation Interoperability Workshop,
Orlando, FL, 21–25 September 2009.

Uys, D., and W. le Roux. “Investigating Interoperability Between JC3IEDM and HLA,” in
Proceedings of the Spring 2009 Simulation Interoperability Workshop, San Diego-Mission
Valley, CA, 23–27 March 2009.

Valle, T., B. Leppard, and C. Santora. “Dead Reckoning in a Mixed HLA/DIS Environment,” in
Proceedings of the 2006 Interservice/Industry Training, Simulation, and Education
Conference, Orlando, FL, 4–7 December 2006, pp. 630–636.

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page A-7

Wallace, J., A. Ceranowicz, E. Powell, R. Lutz, A. Bowers, W. Bizub, D. Cutts, P. Gustavson, R.
Rheinsmith, and T. McCloud. “Object Model Composability and LVC Interoperability
Update,” in Proceedings of the Fall 2009 Simulation Interoperability Workshop, Orlando,
FL, 21–25 September 2009.

Wallace, J., W. Bizub, A. Ceranowicz, D. Cutts, E. Powell, P. Gustavson, R. Lutz, R.
Rheinsmith, A. Bowers, and T. McCloud. “Object Model Composability and Multi-
Architecture LVC Interoperability,” in Proceedings of the 2009 Interservice/Industry
Training, Simulation & Education Conference, Orlando, FL, 30 November–3 December
2009.

White, S. A. “Experiences in Building a Naval Combat System Simulation Environment with
HLA,” in Proceedings of the Spring 2001 Simulation Interoperability Workshop, Orlando,
FL, 25–30 March 2001.

Williams, R., and S. Smith. “UR 2015: Technical Integration Lessons Learned,” in Proceedings
of the Interservice/Industry Training, Simulation, and Education Conference (2007), Paper
#7249, Orlando, FL, 26–29 November 2007.

Wood, D. D. “DIS Radio Protocol Representation and Translation in the RPR FOM,” in
Proceedings of the Spring 1998 Simulation Interoperability Workshop, Orlando, FL, 9–13
March 1998.

Wood, D. D., and M. D. Petty. “HLA Gateway 1999,” in Proceedings of the Spring 1999
Simulation Interoperability Workshop, Orlando, FL, 14–19 March 1999.

Wood, D. D., M. D. Petty, A. Cox, R. C. Hofer, and S. M. Harkrider. “HLA Gateway Status and
Future Plans,” in Proceedings of the 1997 Spring Simulation Interoperability Workshop,
Orlando, FL, 3–7 March 1997, pp. 807–814.

Youmans, B. “Determining RTI Suitability for the Joint Training Confederation,” in Proceedings
of the Spring 2002 Simulation Interoperability Workshop, Orlando, FL, 10–15 March 2002.

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page A-8

This page intentionally left blank.

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page B-1

APPENDIX B. MAPPING OF ISSUES TO EXISTING ARCHITECTURES

This appendix is intended to provide tailoring of the guidance provided in the main
document to specific architecture communities. More specifically, for each of three major
simulation architectures, a mapping is provided to indicate the relevance of each Issue–
Recommended Action pair to developers and users of that simulation architecture. The presence
of a checkmark should emphasize the need for developers/users in each architecture community
to consider the issue identified and the associated user guidance for how to address the issue
when working in a multi-architecture simulation environment development activity.

Step/Activity/Issue DIS HLA TENA

2.1. Step 1: Define LVC Environment Objectives

2.1.1. Activity 1.1 Define Identify User/Sponsor Needs

2.1.2 Activity 1.2 Develop Objectives

2.1.3 Activity 1.3 Conduct Initial Planning

2.1.3.1.1 Issue: Multi-architecture Initial Planning √ √ √

2.1.3.1.2 Issue: Required LVC Expertise √ √ √

2.2 Step 2: Perform Conceptual Analysis

2.2.1 Activity 2.1 Develop Scenario

2.2.2 Activity 2.2 Develop Conceptual Model

2.2.3 Activity 2.3 Develop Simulation Environment Requirements

2.2.3.1.1 Issue: Requirements for Multi-architecture
Development

√ √ √

2.2.3.1.2 Issue: Member Application Requirement
Incompatibility

√ √ √

2.3 Step 3: Design Simulation Environment

2.3.1 Activity 3.1 Select Member Applications

2.3.1.1.1 Issue: Member Selection Criteria for Multi-architecture
Applications

√ √ √

2.3.1.1.2 Issue: Nonconforming Interfaces √ √ √

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page B-2

Step/Activity/Issue DIS HLA TENA

2.3.2 Activity 3.2 Design Simulation Environment

2.3.2.1.1 Issue: Object State Update Contents √

2.3.2.1.2 Issue: Object Ownership Management √

2.3.2.1.3 Issue: Time-managed Multi-architecture Applications √ √

2.3.2.1.4 Issue: Inconsistent Development and Execution
Processes

√ √ √

2.3.2.1.5 Issue: Interest Management Capability Differences √ √ √

2.3.2.1.6 Issue: Gateway Usage and Selection Decisions √ √ √

2.3.2.1.7 Issue: Gateway Translation Paths √ √ √

2.3.2.1.8 Issue: DIS Heartbeat Translation √

2.3.2.1.9 Issue: Multi-architecture and Inter-architecture
Performance

 √ √

2.3.2.1.10 Issue: Translating Non-ground-Truth Network Data √ √

2.3.2.1.11 Issue: Object Identifier Uniqueness and Compatibility √ √ √

2.3.2.1.12 Issue: Developing a Distributed Simulation
Environment Composed of Classified and Unclassified Components

√ √ √

2.3.2.1.13 Issue: Multi-architecture Save and Restore √ √

2.3.2.1.14 Issue: Network Protocol Configuration √ √ √

2.3.3 Activity 3.3 Design Member Applications

2.3.3.1.1 Issue: New Member Application Architecture √ √ √

2.3.4 Activity 3.4: Prepare Detailed Plan

2.3.4.1.1 Issue: Cost and Schedule Estimating for Multi-
architecture Development

√ √ √

2.3.4.1.2 Issue: Tools for Verifying Multi-architecture Data
Applications

√ √ √

2.3.4.1.3 Issue: VV&A for Multi-architecture Applications √ √ √

2.3.4.1.4 Issue: Multi-architecture Data Collection √ √ √

2.3.4.1.5 Issue: Tool Incompatibility √ √ √

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page B-3

Step/Activity/Issue DIS HLA TENA

2.4 Step 4: Develop Simulation Environment

2.4.1 Activity 4.1 Develop Simulation Data Exchange Model

2.4.1.1.1 Issue: Metamodel Incompatibilities √ √ √

2.4.1.1.2 Issue: SDEM Content Incompatibilities √ √ √

2.4.2 Activity 4.2 Establish Simulation Environment Agreements

2.4.2.1.1 Issue: Agreements to Address Multi-architecture
Development

√ √ √

2.4.3 Activity 4.3: Implement Member Application Designs

2.4.3.1.1 Issue: Nonstandard Algorithms √ √

2.4.4 Activity 4.4 Implement Simulation Environment Infrastructure

2.4.4.1.1 Issue: Live Entity TSPI Update Rates √ √ √

2.4.4.1.2 Issue: Network Design, Configuration, and
Management

√ √ √

2.5 Step 5: Integrate and Test Simulation Environment

2.5.1 Activity 5.1 Plan Execution

2.5.1.1.1 Issue: Multi-architecture Planning Considerations √ √ √

2.5.1.1.2 Issue: Distributed Simulation Environment Integration
Testing

√ √ √

2.5.2 Activity 5.2 Integrate Simulation Environment

2.5.3 Activity 5.3 Test Simulation Environment

2.5.3.1.1 Issue: Complexities of Testing in a Multi-architecture
Environment

√ √ √

2.5.3.1.2 Issue: Initialization Sequencing and Synchronization √ √

2.5.3.1.3 Issue: Control of Multi-architecture Simulation
Environment Execution

√ √ √

2.5.3.1.4 Issue: Data Collection Configuration and Testing √ √ √

2.6 Step 6: Execute Simulation

2.6.1 Activity 6.1 Execute Simulation

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page B-4

Step/Activity/Issue DIS HLA TENA

2.6.1.1.1 Issue: Verifying Multi-architecture Execution √ √ √

2.6.2 Activity 6.2 Prepare Simulation Environment Outputs

2.7 Step 7: Analyze Data and Evaluate Results

2.7.1 Activity 7.1 Analyze Data

2.7.2 Activity 7.2 Evaluate and Feedback Results

2.7.2.1.1 Issue: Multi-architecture Simulation Environment
Assessment

√ √ √

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page C-1

APPENDIX C. ABBREVIATIONS AND ACRONYMS

C2 Command and Control

C4I Command, Control, Communications, Computers, and Intelligence

CASE Computer-Aided Software Engineering

CDS Cross-Domain Solution

COTS Commercial Off-the-Shelf

CTIA Common Training Instrumentation Architecture

DIF Data Interchange Format

DIS Distributed Interactive Simulation

DoD Department of Defense

DSEEP Distributed Simulation Engineering and Execution Process

EIA Electronic Industries Alliance

FOM Federation Object Model

GOTS Government Off-the-Shelf

GWB Gateway Builder

HITL Human-in-the-Loop

HLA High Level Architecture

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

IP Internet Protocol

ISO International Organization for Standardization

JCA Joint Capability Area

JCOM Joint Composable Object Model

JMETC Joint Mission Environment Test Capability

LAN Local Area Network

LROM Logical Range Object Model

LVC Live-Virtual-Constructive

LVCAR LVC Architecture Roadmap

M&S Modeling and Simulation

MSIS Modeling and Simulation Information System

Guide for Multi-Architecture Live-Virtual-Constructive Environment Engineering and Execution

Page C-2

MSRR Model and Simulation Resource Repositories

OM Object Model

OMT Object Model Template

PDU Protocol Data Unit

RPR FOM Real-time Platform-level Reference Federation Object Model

RTI Runtime Infrastructure

SDA Software Development Activity

SDEM Simulation Data Exchange Model

SIMPLE SIMC4I Interchange Module for Plans, Logistics, and Exercises

TACLANE Tactical Local Area Network Encryption

TADIL Tactical Automated Data Information Link

TCP Transmission Control Protocol

TENA Test and Training Enabling Architecture

TRADOC Training and Doctrine Command

TSPI Time Space Position Information

UAV Unmanned Aerial Vehicle

UDP User Datagram Protocol

UDP/IP UDP Packets over IP

UJTL Universal Joint Task List

V&V Verification and Validation

VMF Variable Message Format

VV&A Verification, Validation, and Accreditation

WAN Wide Area Network

