

NATIONAL SECURITY ANALYSIS DEPARTMENT
THE JOHNS HOPKINS UNIVERSITY • APPLIED PHYSICS LABORATORY

Johns Hopkins Road, Laurel, Maryland 20723-6099

Enclosure to: NSAD-L-2009-480

NSAD-R-2009-220
Task JHS01

Live-Virtual-Constructive
Architecture Roadmap Implementation

Legacy Architectures Reference Model

November 2009

This page intentionally left blank.

Page iii

Live-Virtual-Constructive
Architecture Roadmap Implementation

Legacy Architectures Reference Model

November 2009

Randy Saunders, JHU/APL

David Drake, JHU/APL

Paul Gustavson, Simventions

Joseph G. Kovalchik, JHU/APL

Wesley Milks, Lockheed Martin

Robert Murray, Boeing

Ed Powell, SAIC

Shon Vick, JHU/APL

This page intentionally left blank.

Page v

T A B L E OF C ONT E NT S
1 Executive Summary .. 1
2 Report Development Process .. 3

2.1 Report Format .. 4
2.2 Referenced Documents .. 4
2.3 Common Constructs... 5

3 Architectural Overviews .. 8
3.1 Common Training Instrumentation Architecture (CTIA).. 9
3.2 Distributed Interactive Simulation (DIS) ... 13
3.3 High Level Architecture (HLA) ... 16
3.4 Test and Training Enabling Architecture (TENA) .. 18

4 Architecture Services .. 22
4.1 Common Training Instrumentation Architecture (CTIA).. 22
4.2 Distributed Interactive Simulation (DIS) ... 24

4.2.1 Simulation Management .. 25
4.2.2 Entity Management .. 26
4.2.3 Other Services .. 27
4.2.4 Comparison of DIS and HLA Operation ... 28

4.3 High Level Architecture (HLA) ... 29
4.3.1 Federation Management... 29
4.3.2 Declaration Management (DM) ... 30
4.3.3 Object Management ... 32
4.3.4 Ownership Management .. 33
4.3.5 Time Management ... 33
4.3.6 Data Distribution Management (DDM) ... 35

4.4 Test and Training Enabling Architecture (TENA) .. 37
5 Support Tools .. 40

5.1 Common Training Instrumentation Architecture (CTIA) Support Tools 40
5.1.1 Planning ... 40
5.1.2 System Control (SYSCON) ... 41
5.1.3 Exercise Control (EXCON) ... 43
5.1.4 Data Collection .. 46
5.1.5 Battlefield Realism... 47
5.1.6 Tactical Analysis and Feedback (TAF) ... 49
5.1.7 Infrastructure Tools .. 50

5.2 Distributed Interactive Simulation (DIS) Support Tools ... 51
5.2.1 Middleware .. 52
5.2.2 Gateway ... 53
5.2.3 Visualization .. 53
5.2.4 Simulation Manager ... 53
5.2.5 Logger/Playback .. 53
5.2.6 Analyzer ... 54
5.2.7 Test Generators .. 54
5.2.8 After Action Review (AAR) .. 54
5.2.9 Software Development Tools .. 54

5.3 High Level Architecture (HLA) Support Tools ... 55

Page vi

5.4 Test and Training Enabling Architecture (TENA) Support Tools........................... 58
5.4.1 Event Planning Tool Suite ... 59
5.4.2 Event Manager/Monitor ... 59
5.4.3 Communication Manager... 60
5.4.4 Event Analyzer Tool Suite ... 60
5.4.5 TENA/Non-TENA Gateway Applications .. 61

6 Summary ... 66

LIST OF FIGURES

Figure 1. LVC simulations interact with real command and control to provide a rich

environment for engineering, training, and testing. (figure credit JFCOM) 3
Figure 2. Common constructs shared by all architectures. ... 6
Figure 3. Overall CTIA system concept. .. 10
Figure 4. CTIA layered architecture. .. 11
Figure 5. CTIA interpretations of the common constructs. .. 13
Figure 6. DIS used by Joint Precision Strike Demonstration. .. 14
Figure 7. DIS interpretations of the common constructs. ... 15
Figure 8. HLA defines a standardized interface between the infrastructure and applications. .. 16
Figure 9. HLA interpretations of the common constructs. ... 18
Figure 10. TENA overview diagram illustrating the categories of software. 19
Figure 11. TENA interpretations of the common constructs. .. 20
Figure 12. Transfer of control example. ... 27
Figure 13. SDO proxies and servants: Their contents and relationships...................................... 38
Figure 14. Example DIS configuration. ... 52
Figure 15. Generic TENA gateway design. ... 61
Figure 16. Federating gateways to balance resources using the Federated Gateway

Manager tool. .. 62
Figure 17. The TENA-HLA gateway. .. 63

LIST OF TABLES
Table 1. Exercise Independent Services. ... 22
Table 2. Exercise Specific Services. .. 23
Table 3. PDU families. .. 25
Table 4. Simulation management PDU “services.” ... 25
Table 5. Transfer Ownership PDUs. ... 26
Table 6. PDU vs. HLA services example. ... 28
Table 7. HLA 1516 service groupings. ... 29
Table 8. Federation management services. .. 30
Table 9. Declaration management. .. 31
Table 10. Object management. .. 32
Table 11. Ownership management. ... 33
Table 12. Time management. .. 35
Table 13. Data distribution management. .. 36

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 1

1 EXECUTIVE SUMMARY

The Live-Virtual-Constructive (LVC) Architecture Roadmap (LVCAR) Study developed
a vision for achieving significant interoperability improvements in LVC simulation
environments. The study recommended activities proposed to lower the time and cost required to
integrate mixed architecture events by building better bridges between the legacy architectures
and making the architectures more compatible. An LVCAR Convergence Team (LVCAR-CT)
has explored converging the current architectures. The recommended approach evolves each
architecture to meet the needs of users while favoring common techniques and solutions. Rather
than make the current High Level Architecture (HLA) like the current Test and Training
Enabling Architecture (TENA), the goal is to make future HLAs more like future TENAs.
Subject matter experts (SMEs) from each architecture participated together on the LVCAR-CT.
Each SME provided existing documentation resources and identified where in the documents to
extract the key services and tools. The LVCAR-CT met to discuss these artifacts and agree on a
framework of common constructs through which to view them. Before identifying the changes
needed to encourage this evolutionary convergence, the LVCAR-CT needs a common
understanding of the services and tools needed to meet the needs of users. This report documents
that understanding.

While the architectures do not do the same thing, their conceptual foundations are based
on common ideas. The architectures serve to connect specialized software programs together,
providing some insulation between the programs to loosen their coupling. Common goals
include facilitating LVC software application reuse, increasing software portability, fostering
network topology independence, and off-loading common functionality. The reuse goal for each
architecture is in the selection of software applications that represent the real players (in a live
context) or the simulation (in a virtual or constructive context). These applications may be
directly connected to military systems, particularly command and control systems, using military
system interfaces. Individual architectures tailor these common constructs in several ways. They
expand the scope of architectural definitions, mandating tool or scenario solutions, for example.
The tradeoff between user needs for broad design freedom and interoperability is reflected in this
tailoring. Providing broad design freedom requires that LVC software application designers
make potentially non-interoperable choices. The other tailoring technique is the insertion of
intermediate layers between the LVC software applications and the infrastructure and support
services. The intermediate layers abstract the provided services to allow more generic
implementations of the software applications. The architecture provides means to implement
these intermediate layers, either directly or by standard interfaces, to save users effort while
providing acceptable interoperability.

A common theme with each of the architectures is the addition, either by an architecture
distributor, by an architecture vendor, by third parties, or developed by end users, of services and

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 2

support tools. Section 4 describes the services provided by the architectures presented in the
previous section. Some of the architectures have little explicit notion of a service (i.e., DIS) but
service analogs are discussed. Section 5 presents an overview of the support tools available for
each of the four architectures we examined.

The LVCAR-CT has established an independent view of the current architectures. The
next step is to determine what actions lead to convergence. The vision is that in 2015, new
versions of Common Training Instrumentation Architecture (CTIA), Distributed Interactive
Simulation (DIS), HLA, and TENA will come out that incorporate the results of the
Convergence Initiative. The LVCAR-CT work does not stand alone. In particular, many
preconditions, which are being pursued as part of related tasks, are necessary to achieve this
vision.

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 3

2 REPORT DEVELOPMENT PROCESS

The purpose of the Live-Virtual-Constructive (LVC) Architecture Roadmap (LVCAR)
Study was to develop a vision and a supporting strategy for achieving significant interoperability
improvements in LVC simulation environments. The study observed that the architectures
available today solve most of the problems of most of their users and they are being improved to
better serve their constituency. These architectures have continued to evolve and mature based
on changing user requirements. Multiple architectures allow users to select the architecture that
best meets their needs and, thus, provide an incentive for architecture developers and maintainers
to competitively keep pace with technology and stay closely engaged with emerging user
requirements, including requirements for better connections between architectures (Figure 1).

Figure 1. LVC simulations interact with real command and control to provide a
rich environment for engineering, training, and testing. (figure credit JFCOM)

The LVCAR Study examined several courses of action before making its
recommendations. The recommended activities propose to lower the time and cost required to
integrate mixed architecture events by building better bridges between the legacy architectures
and making the architectures more compatible. An LVCAR Convergence Team (LVCAR-CT)
was chartered to explore the problem of converging the current architectures, including the
production of this report. The convergence approach recommended to the LVCAR-CT evolves
each architecture to meet the needs of users while favoring common techniques and solutions.
Rather than make the current High Level Architecture (HLA) like the current Test and Training

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 4

Enabling Architecture (TENA), the goal is to make future HLAs more like future TENAs.
Before identifying the changes needed to encourage this evolutionary convergence, the LVCAR-
CT needs to have a common understanding of the services and tools needed to meet the needs of
users. This report documents that understanding.

This report decomposes the existing architectures into services, detailed in Section 4, and
supporting tools, detailed in Section 4. This Architecture Reference Model (ARM) provides the
basis for future comparison of convergence alternatives at a level of resolution adequate to
address the technical details.

The production of this report has relied extensively on existing architecture
documentation, for two reasons. First, the architecture development activities have produced
large quantities of often very good documentation, and ignoring it would be a waste of resources.
Second, and more significantly, the present documentation continues to grow as an integral part
of the ongoing architectural evolution. This report provides a snapshot in time, and linkages to
the ongoing architecture artifacts for future readers.

Subject matter experts (SMEs) from each architecture participated together on the
LVCAR-CT. Each SME provided existing documentation resources and identified where in the
documents to extract the key services and tools. The LVCAR-CT met to discuss these artifacts
and agree on a framework of common constructs through which to view them. The results have
been extracted to form this report.

2.1 REPORT FORMAT
The report is constructed in four major parts: (a) the introduction and list of references;

(b) overviews of each architecture; (c) details of the services in each architecture; and (d) details
of the tools in each architecture.

2.2 REFERENCED DOCUMENTS
The following documents were the sources for the technical details in this report.

[army01] Assistant Secretary of the Army (RDA), Army Science and Technology

Master Plan (ASTMP). Volume I, Chapter VI, 1997.
[ctia01] CTIA-ID-0128, CTIA DoD Architecture Framework Documentation

Version 1.3. Orlando, Lockheed Martin Simulation, Training and Support,
July 2008.

[ctia02] CTIA project documentation, CTIA Layered Architecture View. Orlando,
Lockheed Martin Simulation, Training and Support, February 2007.

[ctia03] CTIA Team at PEO STRI, CTIA Live Training Product Line (LT2)
Overview Briefing. PEO STRI, November 2006.

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 5

[ieee01] Simulation Interoperability Standards Committee, “Standard for Modeling
and Simulation High Level Architecture - Framework and Rules,” IEEE
Std IEEE1516-2000. HLA Working Group, December 11, 2000.

[ieee02] Simulation Interoperability Standards Committee, “Standard for Modeling
and Simulation High Level Architecture - Federate Interface
Specification,” IEEE Std IEEE1516.1-2000. HLA Working Group, March
9, 2001.

[ieee03] Simulation Interoperability Standards Committee, “Standard for Modeling
and Simulation High Level Architecture - Object Model Template
Specification,” IEEE Std IEEE1516.2-2000. HLA Working Group, March
9, 2001.

[ieee04] IEEE FEDEP Working Group, “Federation Development and Execution
Process (FEDEP),” IEEE Recommended Practice 1516.3-2000. R. R.
Lutz, editor, April 2003.

[ieee05] IEEE DSEEP Working Group, “Distributed Simulation Engineering and
Execution Process (DSEEP),” IEEE Recommended Practice P1730. R. R.
Lutz, editor, draft 2009.

[kuhl01] Kuhl, Weatherly, and Dahmann, Creating Computer Simulation Systems:
An Introduction to The High Level Architecture, Prentice Hall PTR,
October 31, 1999.

[rich01] Richbourg, R., and Lutz, R. R., Live Virtual Constructive Architecture
Roadmap (LVCAR) Comparative Analysis of the Architectures.
Alexandria: Institute for Defense Analyses, September 2008.

[tena01] TENA Software Development Activity, TENA The Test and Training
Enabling Architecture - Architecture Reference Document, Version 2005,
February 2005.

[tena02] Noyovitz, P., “TENA Tools Requirements Document,” Revision 1.17
Final, December 9, 2003.

2.3 COMMON CONSTRUCTS
While the architectures do not do the same thing, their conceptual foundations are based

on common ideas. The architectures serve to connect specialized software programs together,
providing some insulation between the programs to loosen their coupling. Common goals
include facilitating LVC software application reuse, increasing software portability, fostering
network topology independence, and off-loading common functionality.

Figure 2 shows the identified common constructs in general. Each architecture has a
different boundary between what is defined by the architecture and its tools and what software or
data is outside it. These common constructs have been aligned in this figure with the Distributed
Simulation Engineering and Execution Process (DSEEP) [ieee05].

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 6

Figure 2. Common constructs shared by all architectures.

The reuse goal for each architecture is the selection of software applications that
represent the real players (in a live context) or the simulation (in a virtual or constructive
context). These applications may be directly connected to military systems, particularly
command and control systems, using military system interfaces. The reuse applications, shown
in Figure 2 as purple ovals, connect to the modeling and simulation (M&S) architecture’s
infrastructure through services used to exchange data. The architecture might also define library
functions that provide support services to these programs. In some applications, these programs
may also interface with real (tactical or equivalent) military equipments.

Support tools, shown in green, facilitate development, integration, execution, and results-
processing. Beyond the definitions of the architecture, shown in blue, a spectrum of external
artifacts are available for use and reuse by developers, marked with the ☺.

Individual architectures tailor these common constructs in several ways. They expand the
scope of architectural definitions, shown in orange, mandating tool or scenario solutions, for
example. The tradeoff between user needs for broad design freedom and interoperability is
reflected in this tailoring. Providing broad design freedom may require that LVC software
application designers make potentially non-interoperable choices.

The other tailoring technique is the insertion of intermediate layers between the LVC
software applications and the infrastructure and support services. The intermediate layers

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 7

abstract the provided services to allow more generic implementations of the software
applications. The architecture provides means to implement these intermediate layers, either
directly or by standard interfaces, to save users effort while providing acceptable interoperability.

Figure 2 lacks an exhaustive treatment of all the data and tool concepts considered by
architecture designers. Rather, the purpose of this figure is to compare and contrast the
architectures in light of common constructs they share.

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 8

3 ARCHITECTURAL OVERVIEWS

Each of the following sections examines one of the existing architectures, in its own
terms and in terms of the common constructs. The LVCAR study produced a top-level
comparison of these architectures, which has guided this development [rich01].

This section presents an overview of the following architectures: Common Training
Instrumentation Architecture (CTIA), Distributed Interactive Simulation (DIS), High Level
Architecture (HLA), and Test and Training Enabling Architecture (TENA). Characteristics of
these architectures are as follows:

1. CTIA: CTIA has a primary user base that is interested in instrumented live training, with
secondary support to the constructive simulation community as the simulations are
required to augment live training. This architecture uses a service-oriented paradigm and
is unique in that respect. It provides a subset level of service even in the face of unreliable
communication networks. CTIA provides a fixed but extensible data exchange service.
The U.S. Army Program Executive Office for Simulation, Training, and Instrumentation
(PEO STRI) controls the CTIA versioning and releases. CTIA is not currently an
international standard, and there are no plans to obtain standardization beyond PEO
STRI. The requirements to handle unreliable wireless data links drove CTIA in its own
architectural directions. CTIA does not compete with any of the existing architectures
(i.e., DIS, HLA, and TENA). Its scope is focused on supporting product line development
associated with Project Manager Training Devices’ (PM TRADE’s) LT2-FTS (Live
Training Transformation – Family of Training Systems) programs responsible for
deploying ground maneuver live training systems to combat training centers, trainees at
their home stations, and deployed locations. and supporting all of the training capabilities
derived from the approved LT2-FTS Operational Requirements Documents (ORDs),
Initial Capabilities Documents, and Capability Production Documents (CPDs).

2. DIS: DIS primarily serves the virtual and real-time constructive simulation community
with a secondary use in the live community. DIS has no central server; instead it uses a
multicast/broadcast peer-to-peer paradigm in its message passing. DIS is an international
standard and is managed and controlled by the Simulation Interoperability Standards
Organization (SISO). DIS has a fixed but extensible data exchange model. There is no
standard verification suite for DIS, although verification tools have been developed by
various user organizations. This protocol has proven to be simple to learn and easy to use,
yet it provides a rich set of rules for semantic interoperability over a wide range of
simulation fidelity. While DIS does not provide as many services as other architectures, it
imposes a very low overhead. Where simulation events do not require using more
advanced architectural services (such as time management, federation management, and

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 9

so on), DIS offers a very economical solution to the simulation intercommunication
problem.

3. HLA: HLA serves primarily the constructive and virtual simulation user communities,
and secondarily supports the live simulation community. It uses a peer-to-peer message-
passing paradigm. It is an international standard. The features are managed by SISO.
There is a formal middleware verification process managed by DoD’s M&S Coordination
Office (M&S CO). HLA uses a user-defined data exchange model. This architecture can
serve a disparate collection of simulation systems, including those that require advanced
architectural services and those that have modest requirements. In addition to its large
U.S. user base, its standing as an international standard has resulted in a large level of use
in the coalition partner countries, facilitating combined simulation events that include
multiple nations.

4. TENA: TENA serves the live training and testing user community. It uses a peer-to-peer
message-passing paradigm. It is not an international standard but it is managed and
controlled by the Architecture Management Team (AMT). It uses a user-defined data
exchange model. Offering much of the same capability as HLA, but based on more
modern object-oriented (OO) technology, TENA supports OO programming for new
software application development. The TENA middleware is offered to government users
as government off-the-shelf (GOTS) software, unlike the HLA middleware that is a
commercial off-the-shelf (COTS) software with various vendor fee structures.

These architectures are available today, and all of the existing architectures are being
improved to better serve their communities of use. The various distributed simulation
architectures in use within the DoD have all been designed to meet the needs of one or more user
communities. These architectures have continued to evolve and mature based on changing user
requirements. The existence of multiple architectures allows users to select the architecture that
best meets their individual needs.

Since 2001, work has been ongoing to develop common engineering practices for
simulation development. This work produced the IEEE standardized Federation Development
and Execution Process (FEDEP) [ieee04] and its successor DSEEP [ieee05]. Some architectures
have explicitly included this engineering process in their development process, and the goal of
the DSEEP developers is to extend coverage to all architectures. Another effort within the
LVCAR implementation is the development of an architecture-independent systems engineering
process.

3.1 COMMON TRAINING INSTRUMENTATION ARCHITECTURE (CTIA)
CTIA provides a common training architecture for the Army’s LT2 Product Line. The

CTIA architecture enables distributed training by linking LVC assets with visualization, data
collection, and after action review (AAR) capability on a training range. Its functionality centers

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 10

on the receipt, correlation, and processing of data related to the live ground maneuver domain
(i.e., collects and processes live training data to meet exercise objectives). It is designed to access
a very large number of assets to collect data over relatively unreliable wireless data links. It
supports rapid training system development and fielding based on “plug & play” components
and provides logically centralized services with persistent data. The scalability of the system to
support squad through brigade echelon live training warfighters hinges on data processing and
computation (e.g., the interaction of databases, workstations, players/entity state). Figure 3
reflects the overall CTIA system design [ctia01].

Figure 3. Overall CTIA system concept.

With a requirement to provide a persistent, common database of all objects that are
reused by the LT2-FTS programs, CTIA is required to support persistence of component
identities across restarts. Thus, all information is continually recorded in an SQL-type database
to support exercise execution and anytime, anywhere Army live training AARs. This
requirement is different from that imposed on a traditional data logger, which records
interactions sent across the simulation network. CTIA is the only architecture that supports such
a requirement (although TENA has a requirement to “support the local collection of data to a

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 11

persistent store” that has not been implemented). It is this tight coupling to a persistent database
that makes CTIA an installation-specific system that is not competitive with any of the existing
architectures (i.e., DIS, HLA, and TENA). Further, CTIA has the requirement to support
communication over a wireless network. This has two impacts on the development of the CTIA
architecture. First, it must carefully manage bandwidth over wireless links. This was
accomplished by using centralized services to better manage the communication bandwidth
between the wireless nodes. Second, it needs to make provisions in the architecture for unreliable
wireless data links. CTIA does provide gateways to non-CTIA-compliant protocols (such as DIS,
TENA, and HLA), and the middleware is based on an open-standard version of the Common
Object Request Broker Architecture (CORBA) that it uses without customizations. Thus, CTIA-
based applications may use any adequate Object Request Broker (ORB) the way any CORBA
application would, and as a result, CTIA-compliant components may be developed without using
any CTIA-developed code.

CTIA uses the service-oriented architecture (SOA) paradigm and is unique in that
respect, as most other distributed simulation architectures (i.e., DIS, HLA, and TENA) are
designed to use peer-to-peer network architectures rather than client-server architectures. The
provision of reliable transport and other advanced quality of service (QoS) mechanisms when
required by user applications will likely be a requirement for all architectures in the future.
Figure 4 shows how the pieces fit together [ctia02].

Figure 4. CTIA layered architecture.

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 12

CTIA evolution/maintenance belongs with the architecture organization for the
development of a specific set of Army Live Ground Maneuver training products that is
configuration managed as a product line family by PEO STRI/PM TRADE organization. Several
versions of the middleware have been developed by the architecture organization and are being
maintained via the PM TRADE LT2 Portal (https://www.lt2portal.org/). The portal also includes
documentation regarding the development of middleware by other producers, development of
common tools, and integration of products using the collection of common assets. All CTIA/LT2
components are available to be reused by all consumers belonging to the PM TRADE LT2-FTS
programs or other government agencies approved by PM TRADE.

The majority of LT2 components, including the CTIA middleware components, are
available as both executables and source code with unlimited government rights available to their
LT2-FTS consumers. The goal of the LT2-FTS product line is to maximize reuse of code across
the LT2 family of training products and provide common interoperability solutions for LT2-FTS
with external training systems used on Army ranges or with other Joint ranges. The LT2-FTS
requirements used to develop the architecture and middleware development were derived from
multiple PM TRADE program Operational Requirements Documents (e.g., Combat Training
Center Objective Instrumentation System [CTC-OIS], Homestation Instrumentation Training
System [HITS], Instrumented Ranges, Military Operations in Urban Terrain [MOUT], One
Tactical Engagement Simulation System [OneTESS], etc.).

Figure 5 shows the CTIA interpretation of the common constructs. The defined bounds of
the LT2 Program encourage the CTIA architecture to define many constructs that in more
generic architectures are left as design freedom for developers. Simulations or Player
Applications include a layer of adapter middleware that is provided by the CTIA development
team. The central infrastructure includes an explicit CORBA component, and services can be
aware of the CORBA technical components. Execution data has a supporting role, like other
architectures, but it has a long-term persistence in order to support warfighter performance
assessment and AAR that is unique, as described above. In addition to typical software libraries,
the CTIA program defines a significant part of the development environment and provides
documentation and a help desk to directly support developers. A dedicated data exchange model,
specific to the persistent data store, is defined by the CTIA program for all users and
applications. Reuse tools, in the form of a specific LT2 reuse library, provide significant
additional capability to CTIA developers, including support for classified artifacts.

In summary, the CTIA requirements to handle unreliable wireless data links drove CTIA
in its own architectural directions, and, as an installation-specific system, CTIA does not
compete with any of the existing architectures (i.e., DIS, HLA, and TENA). Its scope is focused
on supporting product line development associated with PM TRADE’s LT2-FTS programs
responsible for deploying ground maneuver live training systems to combat training centers,
trainees at their home stations, and deployed locations; reducing total ownership and life-cycle

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 13

costs for all PM TRADE LT2-FTS programs; and supporting all of the training capabilities
derived from the approved LT2-FTS ORDs, ICDs, and CPDs. The single-program approach
taken on CTIA is narrower, in terms of the scope of uses supported, but much deeper, in terms of
the level of reuse and compatibility expected.

Figure 5. CTIA interpretations of the common constructs.

3.2 DISTRIBUTED INTERACTIVE SIMULATION (DIS)
Distributed Interactive Simulation (DIS) was born out of the DARPA SIMNET program

of the mid-eighties. The DIS standard is documented in the IEEE 1278 series of standards. DIS is
optimized for real-time platform-level simulations. These applications are generally able to
compensate for many kinds of communications problems (latency, limited bandwidth, etc.).
Thus, DIS applications manage their representation of time but do not have time management in
the form used in many discrete event constructive simulations. Time in DIS is real time, as
defined by the International Time Bureau. Likewise, DIS applications must tolerate occasional
dropped packets because DIS uses best-effort delivery of messages through use of the User
Datagram Protocol (UDP). The simplicity inherent in the requirements of DIS applications
allows it to work with very low overhead. Thus, the DIS protocol has a comparatively low
barrier to entry and it is relatively simple to learn and easy to use.

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 14

Figure 6. DIS used by Joint Precision Strike demonstration.

The DIS data architecture specifies an on-the-wire protocol that strictly enforces data
structure/encoding rules. Because DIS focuses on one simulation domain, and the allowable
content for data exchange is published in the IEEE Standard, the semantics of the data in DIS
messages has been clearly specified with detailed rules of use. Users of other architectures (e.g.,
HLA Real-time Platform Reference [RPR] Federation Object Model [FOM)] refer to the DIS
standard for the semantic rules. DIS has recently developed a major revision, making a minimum
of changes to the Protocol Data Unit (PDU) content/structure. In addition, DIS is locally
extensible through the use of the experimental PDUs, and recent efforts have provided further
extensibility while maintaining backwards compatibility. As an example, Figure 6 shows a
diverse DIS network that was deployed by the Joint Precision Strike Demonstration program
using point-to-point T1 telephone lines.

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 15

Figure 7. DIS interpretations of the common constructs.

Figure 7 shows how the DIS community has approached the common constructs.
Simulations or Player Applications include a layer of adapter middleware that extracts data from
the simulator’s internal representation. Many DIS uses involve simulations “converted” from
stand-alone operation to work on a DIS network. In addition, several middleware products are
available for DIS to assist in the production and processing of PDUs. The DIS conceptual model
and format for data exchange are explicitly defined in the IEEE Standard and taken as permanent
by many DIS users. DIS also provides an extensive enumeration of the “entities” represented and
many of their component systems. This database of identifying tuples is used as a reference even
outside the DIS community. Several companies sell DIS software libraries, some of which
integrate the company’s simulation hardware into the DIS network. The role of these products is
not defined or mandated in DIS, but the long-term stability of DIS has made their product
possible.

In summary, DIS serves its user base well, particularly the real-time platform community.
This is evidenced by the fact that so many organizations continue to use DIS. Costs are low and
are seen as part of development. Those who use DIS have taken “ownership” of it. Costs for
maintenance and evolution are seen as the cost of doing business. However, there is no one from
the DoD enterprise perspective at the vanguard of DIS development. DIS has taken a consensus-
based engineering approach, which has produced a durable solution for DIS users.

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 16

3.3 HIGH LEVEL ARCHITECTURE (HLA)
The HLA was developed to be a single architecture that could meet the needs of a broad

potential set of LVC environment users. Under the leadership of the Director, Defense Research
and Engineering (DDR&E), it was predetermined that HLA would support all DoD simulation
application areas, those served by DIS and those DIS did not serve. Its charter was to unify
simulation across the DoD. Thus, HLA was really the first distributed M&S interoperability
paradigm intended from the ground up to support the collective requirements of the LVC
communities. To accomplish this, HLA was designed as an architecture with a broad range of
services not coupled to the information content of a specific LVC federation, thus providing the
flexibility to serve a broadened base of M&S users and a set of exercise requirements. Where the
DIS community had defined a single data exchange model solution, HLA designers engineered a
broad spectrum of solutions to address additional requirements from communities such as
Acquisition and Analysis that had not been able to accept the single DIS conceptual model
[kuhl01].

Figure 8. HLA defines a standardized interface between the infrastructure and applications.

As a general-purpose simulation interoperability architecture, HLA can serve a disparate
collection of simulation systems, including those that require advanced architectural services, as
well as those that have modest requirements as illustrated in Figure 8. While able to
accommodate many different use cases, this one-size-fits-all approach required HLA to
incorporate many services that are superfluous to some use cases. For example, motivated by the
requirements of constructive federations, HLA has a requirement, and a solution, to support non-
real-time applications that require strict causal ordering of events and time synchronization
mechanisms. To support this solution, HLA is required to support reliable transport and other
higher overhead communications mechanisms. Particularly in the early days of HLA, the
overhead required to support all of these different requirements was viewed as an impediment to

Live
Participants

Data Collectors,
Viewers, etc.

Interface

Simulation
Surrogates

Runtime Infrastructure

Simulations

C4ISR

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 17

run-time performance and it paved the path for a number of use case-optimized middleware
implementations (i.e., the Run-Time Infrastructure, or RTI).

The design choices made by HLA attempted to improve on perceived shortcomings of
existing architectures while serving the entire DoD M&S community. The static nature of DIS
PDUs caused some representation problems; as the real world is always changing, HLA adopted
a flexible object model capable of modeling changing data without having to change
infrastructure. The HLA template approach allowing the users to define their data exchange
based on specific requirements provided improved object model extensibility. While this
increased flexibility to the user, it also allowed users to independently develop a plethora of
object models that were rarely interoperable. In recognition of the problem associated with
specifying a new object model for each new application, users were encouraged by the SISO
Reference Federation Object Model study team to define community-standard object models
outside of the architecture. The Real-time Platform Reference (RPR) Federation Object Model
(FOM) is one example that improves syntactic interoperability. However, it does not go very
deeply into the semantic level.

HLA adopted an Application Programming Interface (API) Standard as opposed to an on-
the-wire standard that allowed it to more rapidly adopt technological advancements in how data
is transmitted. This approach provided commercial RTI developers with the freedom to innovate
and optimize their implementations, but the resulting RTIs were non-interoperable.

In today’s HLA community, the acquisition of HLA middleware is nearly completely
decentralized. Proponents are required to adopt a specific RTI implementation, often buying a
middleware license from one of the many middleware providers. The existence of middleware
license fees, particularly multiple middleware license fees at the federation level, has been a
target of criticism. However, the existence of multiple competing middleware vendors promotes
innovation for market differentiation, controls costs by market forces, and scales with demand.

HLA-compliant RTI middleware is subjected to an extensive test suite to verify API and
service functionality testing against the HLA Interface Specification. Essentially, certification
means that the RTI developer has accurately and successfully implemented all of the defined
HLA services. The M&S CO currently provides RTI verification testing.

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 18

Figure 9. HLA interpretations of the common constructs.

Figure 9 shows how the HLA community has approached the common constructs.
Simulations or Player Applications may include a layer of adapter middleware that extracts data
from the simulator’s internal representation. Many HLA uses involve simulations “converted”
from DIS or stand-alone operation to use HLA. Some middleware products are available for both
DIS and HLA to further blur this distinction. The HLA RTI provides an IEEE Standard defined
API to the HLA services. Several companies sell HLA RTIs, and the role of these products is
explicitly defined in the HLA Standards.

HLA has taken a more indirect engineering approach, where users have to specify more
of the conceptual model and data exchange model than in other architectures. The DoD-wide
applicability of HLA in all M&S application areas does not support the level of standardization
found in DIS or CTIA.

3.4 TEST AND TRAINING ENABLING ARCHITECTURE (TENA)
Offering much of the same capability as HLA, but based on more modern OO

technology, TENA exploits OO programming in its implementation (e.g., polymorphism, local
methods, Remote Method Invocation [RMI], etc.). The architecture was originally designed to
link the test facilities at various range locations and, where applicable, link the test ranges to
high-performance computational assets. The communication between ranges in TENA involves
passing test information, potentially a large set of data, the nature of which can change with each
new test.

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 19

Figure 10. TENA overview diagram illustrating the categories of software.

TENA recognizes five basic categories of software as illustrated in Figure 10:

• TENA Applications (Range Resource Applications and TENA Tools) (shown in
green)—Range Resource Applications are range instrumentation or processing
systems built to be compliant with TENA and are the heart of any logical range.
TENA Tools are generally reusable TENA applications, made available to the
community, that help facilitate the management of a logical range through the entire
range event life cycle.

• Non-TENA Applications (gray)—Range instrumentation/processing systems,
systems-under-test, simulations, and command, control, communications, computers,
intelligence, surveillance, and reconnaissance (C4ISR) systems not built in accordance
with TENA but needed in a logical range.

• The TENA Common Infrastructure (red)—Those software subsystems that provide the
TENA Repository, as a means for storing applications, object models, and other
reusable information; the TENA Middleware, for real-time information exchange; and
the Logical Range Data Archive, for storing scenario data, data collected during an
event, and summary information.

Non-TENA Applications

Range
Resource

Application

Reusable
Applications

Reusable
Applications

Non-TENA Communications

TENATENA

Range Resource
Application

Data
Collectors

HWILHWIL

Range
Resource

Application

Repository
Utilities

TENA
Object

TENA
ObjectTENA

Object

Infrastructure
Management and
Planning Utilities

Object Model
Utilities

TENA Utilities

TENA Common Infrastructure

TENA Applications

Non-TENA
System

Non-TENA
System

TENA Tools

GatewayGateway

TENA MiddlewareTENA
Repository TENA Middleware

Logical
Range
Data

Archive

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 20

• The TENA Object Model (yellow)—The common language used for communication
between all range resources and tools. The set of objects used in a logical range is
called the “Logical Range Object Model (LROM)” and may contain TENA standard
object definitions as well as non-standard object definitions.

• TENA Utilities (blue)—Applications specifically designed to address issues related to
usability or management of a logical range.

This segmentation is designed specifically to address all of TENA’s driving
requirements. Interoperability is addressed by the TENA Domain Specific Software
Architecture, including the common TENA object model and infrastructure. Reusability is
addressed through the use of a common infrastructure as well as through the existence of
numerous gateways that can bridge a TENA logical range to other architectures, protocols, and
systems. Composability is addressed through the use of certain TENA tools and utilities that
access components and object definitions stored in the TENA Repository [tena01].

TENA enforces a higher level of model compliance through the use of a compiled object
model that enables compile-time type checking and improves the reliability of the system. TENA
has three levels of compliance, none of which is associated with formal compliance tests but use
checklist-like constructs.

Figure 11. TENA interpretations of the common constructs.

Figure 11 shows how the TENA community has approached the common constructs.
Simulations or Player Applications include a layer of generated middleware built for the specific
Logical Range in which they are being used. This generated code uses the strong, type-safe, OO

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 21

programming mechanisms of the C++ language to tightly bind the TENA into the application.
TENA users have to use programs built from the ground up, or thoroughly refactored, to use the
OO techniques. The execution and integration benefits outweigh these development costs for
TENA users.

In summary, TENA offers additional OO programming constructs other than those
offered by the HLA, including code generation for data marshaling and interfaces, with reduction
in scope (i.e., addressing a subset of the HLA requirements).

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 22

4 ARCHITECTURE SERVICES

This section describes the services provided by the architectures presented in the previous
section. Some of the architectures have little explicit notion of a service (i.e., DIS) but service
analogs are discussed.

4.1 COMMON TRAINING INSTRUMENTATION ARCHITECTURE (CTIA)

CTIA is based on a SOA. LT2 components within the CTIA framework interact with

services via defined Interfaces (defined using CORBA Interface Definition Language [IDL]).
The components use these CTIA services to mediate their interaction with each other through the
CTIA framework. Broadly, the CTIA services can be grouped into two categories: Exercise
Independent Services and Exercise Specific Services as illustrated in Tables 1and 2. The entries
in each table give a brief explanation of the functionality of each service.

T able 1. Exercise Independent Services.

Registration Agent Components discover the Registration Agent through the CORBA
Naming Service. The Registration Agent returns to the component
its ID and Exercise Management reference used in exercise
management. The Registration Agent provides algorithms to
facilitate the assignment of components to the appropriate router
and also assigns routers to “parent” routers.

Component Service Supports persistence of component identity across component
restarts. Maintains a component state when a component is out of
communication. Publishes component state; allows query of
component typing information. Associates component with host
computer Brokers Component Commands. Mediates the
commanding between controllers and controlees, ensuring
command and result are logged as a single event.

Exercise Management Service Provides a general mechanism for management of training range
exercise data. Allows creation of new training range exercises.
Provides access to information for exercises and exercise data.
Allows association of entities, to include compute hosts, to
specified exercise. Manages exercise databases. Provides API to
retrieve references to other services.

GPS Correction Factor Service Dissemination of digital GPS correction factors to tracker
components that require them. Uses UDP multicast for distribution
of DGPS (digital GPS); data packet is serialized using Common
Data Representation (CDR) and defined using CORBA IDL.

Metadata Service Provides the capability to define and modify component and
battlespace object definitions to be managed as “CTIA Flexible
Features.” Allows the introduction of additional objects and state
data during an exercise. Provides support for file mapping, and
document type services. Allows persistence of this information
across exercises (will be exercise-specific starting with Spiral 5
Increment 4).

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 23

T able 2. Exercise Specific Services.

Event Dispatch Service Events are one of two mechanisms that facilitate component
interaction: Commands, discussed under Component Service, and
events. This service supports out-of-communication conditions and
allows components to “pre-allocate” IDs for creation of primary
objects. Events are validated and exception is returned to sender if
any event in the list fails validation. Unreliable dispatch allows
components to generate events without waiting for validation
results (uses CORBA one way until Spiral 5, where a non-CORBA
UDP unicast connection will be supported).

Event Query Service Provides APIs to query logged events from the exercise database.
Supports Playback and AAR. Provides APIs to query the event
causality chain as a series of Cause And Effect Events.

Event Subscription Service Allows event filtering mechanisms to automatically traverse object
relationships to find events associated with a particular
geographical region, type of component, or observer.

Object History Service Provides a general mechanism for querying the CTIA database for
historical information. Supports the retrieval of relationships
between exercise data. Provides interface for historical queries that
is similar to SQL queries. Supports traversal of complex object
relationships. Uses the same filter mechanism as the Event
Subscription Service.

Object Management Service Provides a general mechanism for querying the CTIA database for
current information. Provides interface similar to Object History
Service, without the “time” parameter. Provides APIs to create
certain types of primary objects. Other types are created by
dispatching events.

Rule Service Provides the capability to query for rules and alarms (e.g., Player
out of Bounds). A rule establishes the conditions that lead to the
generation of an alarm.

Situational Awareness (SA) Region
Management Service

Provides a scalable means of providing tracking data for
instrumented and non-instrumented battlespace objects,
engagement data and training object data such as overlays,
entities, and organizations as well as relationship data such as
entity relationships with organizations. It supports generation of
data feeds appropriate for SA displays. Such SA region data is
delivered via UDP multicast stream.

Tactical Message Service Provides C4I message format and metadata definitions defined as
Flexible Features using the Extensible Markup Language (XML).
Service provides API to query mapping between tactical roles and
C4I addresses.

Tracking Control Service Provides control over the rate at which trackers generate data to
support large-scale exercises. The service is based on geographic
region and allows overlapping regions with precedence levels and
on entity type (i.e., real vs. simulated). Allows the specification of
minimum thresholds for distance and orientation, as well as
frequency. Allows the report of any entity movement. Allows
services to determine that the tracker is “out of comms,” and uses
redundant tracking data (if available)

Tracking Data Query Service Supports the historical query of tracking data specifically to support
playback and AAR.

TENA Services Services to provide the ability to use the TENA middleware
(introduced in Spiral 5). Uses elements of TENA Object Models.
CTIA Services publishes and subscribes to TENA Entity Stateful
Distributed Objects (SDOs). Range gateways are replaced by
TENA middleware and a common LROM. All CTIA plug and play
(PnP) components still communicate using CTIA framework.

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 24

4.2 DISTRIBUTED INTERACTIVE SIMULATION (DIS)
DIS is a network-protocol-based simulation protocol that allows interoperability between

real-time simulations of weapons platforms. The DIS protocol concentrates on the interoperation
at the entity level, such as tanks, ships, aircraft, soldiers, and associated objects such as radios,
laser designators, and sensors such as radar and Forward Looking Infrared Radar (FLIR). The
protocol supports state updates for entities and objects and events such as collisions and weapons
fire that occur in the real world. Because the computational metaphor in DIS is protocol based
and not a “service-based” model (for the most part), it is difficult to compare DIS and the other
simulation regimes in terms of services and object models.

Rather, the DIS protocol centers on PDUs. It is an on-the-wire network protocol
patterned after the Internet protocols. It evolved from the SIMNET protocol of the 1980s that
was developed by the Army for connecting tank training simulators. DIS is specified in IEEE
Standard 1278. The 1278.1 standard for DIS protocol defines the exact data structure for each
PDU, along with rules for the content, timing, and related usage. Thus, DIS is independent of
any programming language, operating system, or computer platform. A related communication
profile standard, 1278.2, specifies how PDUs are transmitted through multicast, broadcast, or
unicast User Datagram Protocol/Internet Protocol (UDP/IP) datagrams.

The DIS standard is 700 pages of rules that speak directly to weapons platform modelers.
These pages could be considered in effect the DIS conceptual model. As just one of hundreds of
examples, DIS describes how to communicate a munitions detonation, possibly with secondary
explosions and details of multiple separations of sub-munitions. This is not just the data type and
format (syntactic interoperability) but also many pages of rules (semantic interoperability).
Details of military operations and systems such as phased array radar, underwater acoustics,
minefields, laser weapons, and cyber attacks are all supported and described to some detail in the
DIS standard.

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 25

Table 3 categorizes PDUs into these protocol families:

T able 3. PDU families.

Entity Information/Interaction Entity state (Time Space Positioning Information and
visual state)
Collision
General-purpose attributes

Warfare Missiles, bombs, artillery
Decoys, countermeasures
Directed energy weapons
Damage state

Logistics Service, resupply, repair
Emissions Regenerations Radar, laser designators, underwater acoustics,

Identification Friend or Foe
Radio communications Voice, data link, intercom
Minefields Minefield state, query, data
Synthetic Environment Natural environmental processes and objects
Information Operations (IO) IO action, IO report
Live Entity Protocol Reduced bandwidth for radio links, not commonly used
Non-Real-time Protocol No evidence that this gets used
Simulation Management Start, Stop, Initial Conditions, Comment, etc.
Entity Management Aggregate State, Transfer Ownership

Only entries from Table 3 that are gray more directly correspond to HLA services. The

semantics of these PDUs are presented below.

4.2.1 Simulation Management

The meaning and use for each PDU type in the simulation management category are

given in Table 4.

T able 4. Simulation management PDU “services.”

PDU Description
Start/Resume How the Start/Resume of an exercise is communicated.
Stop/Freeze How a simulation is stopped or suspended (frozen).
Acknowledge The acknowledgment of the receipt of a Start/Resume PDU, Stop/Freeze PDU, Create Entity

PDU, or a Remove Entity PDU is communicated by issuing an Acknowledge PDU.
Action Request A request from a Simulation Manager to a managed entity to perform a specified action is

communicated using an Action Request PDU.
Action Response When an entity receives an Action Request PDU, that entity will acknowledge the receipt of

the Action Request PDU with an Action Response PDU.
Data Query A request for data from an entity is communicated by issuing a Data Query PDU.
Set Data Initializing or changing internal state information is communicated using a Set Data PDU.
Data Information issued in response to a Data Query PDU or Set Data PDU is communicated

using a Data PDU.
Event Report A managed entity reports the occurrence of a significant event to the simulation manager

using an Event Report PDU.
Comment Arbitrary messages (character strings for example) are entered into the data stream by using

a Comment PDU.
Create Entity The creation of a new entity is communicated using a Create Entity PDU.
Remove Entity The removal of an entity from an exercise is communicated with a Remove Entity PDU.

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 26

4.2.2 Entity Management

4.2.2.1 Aggregate State

In DIS, entities can be grouped to eliminate retransmission of their common attributes.

This is accomplished through the concept of an Aggregate State PDU.

4.2.2.2 Transfer Ownership
An entity that is not an aggregate entity may be transferred from one federate to another.

Individual attributes cannot be transferred in DIS. A federate is deemed to have implemented the
Transfer Control function if it initiates or receives and processes the Transfer Control Request
PDU. A federate that does not implement the Transfer Ownership function is not required to
process any of the PDUs unique to this function. The PDUs associated with the Transfer
Ownership functions are listed in Table 5.

T able 5. Transfer Ownership PDUs.

PDU Description
Transfer Control Request (TCR) Request for control transfer, that need not be granted
Set Record-R The PDU sent containing internal state data that is sent right after

acknowledgement.
Acknowledge-R The PDU sent to acknowledge request for ownership.
Entity State When the federate ceding control receives the initial Entity State PDU from the

federate that is obtaining control, it stops transmitting PDUs for the transferred
entity and so no longer owns it.

Event Report (Ownership) The federate acquiring ownership must report that they are now transmitting
information about the transferred entity. This is accomplished with the Ownership
Event Report PDU.

Data Query (Ownership) If the federate that owns the entity has implemented the Transfer Ownership
function, it is required to respond with an Ownership Data PDU.

Data (Ownership) PDU issued in response to Data Query (Ownership).
Record Query-R Used by a federate when requesting internal state data on an entity in preparation

for deciding whether to initiate or respond to a transfer request.

Figure 12 gives an example of how the PDUs summarized in Table 5 could be used to
affect a transfer of control scenario in a DIS-based simulation.

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 27

Figure 12. Transfer of control example.

4.2.3 Other Services
Like most architectures, DIS provides the ability to update the state of objects and to

transmit events. In DIS terminology, updates are accomplished with “state PDUs,” and events
are transmitted with “transient PDUs.” This is analogous to object updates and interactions in
HLA. Entities and objects are persistent so their state is updated when it changes. Events are
transmitted every time they occur, and their data is transient.

DIS specifies a multicast network service (or broadcast, a special case of multicast). This
is a key factor in network bandwidth reduction and scalability. Any piece of data is sent only
once, replicated in the network, and delivered to only those federates that are listening on that
address or set of addresses.

DIS specifies the Dead Reckoning service, which greatly reduces bandwidth and solves
the problem of asynchronous frame rate and frame phasing in simulators. Spatial state
information is transmitted only after it has diverted from its predicted path by a set threshold
(typically 1 meter of position and 3 degrees of orientation), thus reducing update bandwidth. The
receiving simulator extrapolates the spatial information between updates. Improper jumps in
received spatial position that would normally occur in asynchronous simulators are eliminated by
the extrapolation process.

Even though time management is not supported in DIS, the handling of time is
extensively specified. Distinctions and use of simulation time and real-world time, both relative

NOTES match sequence numbers.

1. A Pull or Manual Pull Request is initiated.

2. Optional: Only required if the DF is in the
manual mode. Indicates final acknowledgement
is awaiting manual operator action.

3. If a Not Able To Comply is sent the transfer is
cancelled.

4. One or more Set Record-R PDU will be sent
with internal state data or indicating the absence
of data.

5. Optional: One or more Record-R PDUs may be
sent. If sent, they are not required to be
processed by DF.

6. The transfer is completed when the AF
publishes the entity for the first time.

7. The Event Report PDU is sent to indicate the
new owner of the entity.

M

A Start Automatic Response Timer

Start Manual Response Timer

A/M Start Automatic or Manual Response Timer

1. Transfer Control Request PDU (Pull or
Manual Pull)

2. Acknowledge-R PDU (Pending)

3. Acknowledge-R PDU (Able or Not able)

4. Set Record-R PDU

6. Initial Entity State PDU

7. Event Report PDU

Pull-Acquire Pull-Divest

A

M

A

Divesting
Federate (DF)

Acquiring
Federate (AF)

5. Record-R PDU A/M

A/M

NOTES match sequence numbers.

1. A Pull or Manual Pull Request is initiated.

2. Optional: Only required if the DF is in the
manual mode. Indicates final acknowledgement
is awaiting manual operator action.

3. If a Not Able To Comply is sent the transfer is
cancelled.

4. One or more Set Record-R PDU will be sent
with internal state data or indicating the absence
of data.

5. Optional: One or more Record-R PDUs may be
sent. If sent, they are not required to be
processed by DF.

6. The transfer is completed when the AF
publishes the entity for the first time.

7. The Event Report PDU is sent to indicate the
new owner of the entity.

M

A Start Automatic Response Timer

Start Manual Response Timer

A/M Start Automatic or Manual Response Timer

M

A Start Automatic Response Timer

Start Manual Response Timer

A/M Start Automatic or Manual Response Timer

1. Transfer Control Request PDU (Pull or
Manual Pull)

2. Acknowledge-R PDU (Pending)

3. Acknowledge-R PDU (Able or Not able)

4. Set Record-R PDU

6. Initial Entity State PDU

7. Event Report PDU

Pull-Acquire Pull-Divest

A

M

A

Divesting
Federate (DF)

Acquiring
Federate (AF)

5. Record-R PDU A/M

A/M

1. Transfer Control Request PDU (Pull or
Manual Pull)

2. Acknowledge-R PDU (Pending)

3. Acknowledge-R PDU (Able or Not able)

4. Set Record-R PDU

6. Initial Entity State PDU

7. Event Report PDU

Pull-Acquire Pull-Divest

A

M

A

Divesting
Federate (DF)

Acquiring
Federate (AF)

5. Record-R PDU A/M

A/M

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 28

and absolute, are described to great detail. This is critical in real-time exercises and even more
critical where latency in long-distance networks would cause unacceptable anomalies.

The DIS heartbeat service overcomes two problems in large-scale networks. State PDU
updates are forced for objects that have remain unchanged for the duration of their heartbeat
period. This solves the problems of best-effort network delivery and “late joiners.” If a state
update is dropped in a best-effort network, it is automatically re-sent within one heartbeat period.
Late joiners, which technically are all federates joining the exercise after the first one, get the
entire state of the exercise within one heartbeat period without the complication of requesting it.
Heartbeat periods vary from 5 to 60 seconds, depending on the nature of the state data.

Just as important as services that DIS specifies are those it avoids. Services that are
impractical in large-scale or long-distance network implementations are not used by DIS.
Examples are centralized servers and control computers, which are bottlenecks and single points
of failure. Services requiring Transmission Control Protocol (TCP) connections between all
federates are also non-scalable because they require connectivity on an order of N-squared.

4.2.4 Comparison of DIS and HLA Operation
An exercise scenario that illustrates the different paradigms is shown in Table 6.

T able 6. PDU vs. HLA services example.
Action DIS (action) HLA Service Comments

Create an exercise Define (or use) an
exercise ID

Create federation execution

Join the exercise Listen and send PDUs as
appropriate

Join federation execution Implicit vs. explicit

Get an object ID (entity) Application creates a
unique ID

Request object ID(s) from
the RTI

Create an object (entity) Start sending entity state
PDUs (ESPDUs)

Instantiate object

Discover new object
(entity)

ESPDU from unknown
entity arrives

Instantiate discovered object Call from RTI to federate
software

Tank moves forward Send entity state PDU Update attribute value
(position)

RTI sends only the
changed data (position)

Tank moves turret Send entity state PDU Update attribute value (turret
orientation)

RTI sends only the
changed data (turret
orientation)

Tank fires at tank Send fire PDU Send interaction (direct fire) virtually identical
Delete object (entity) Set deactivate flag in last

ESPDU
Delete object

Leave the exercise Stop listening and
sending PDUs

Resign federation execution Implicit vs. explicit

Terminate exercise All simulations stopped Destroy federation execution Implicit vs. explicit

Despite their dissimilar computing models, there are natural analogs between DIS and the

HLA RTI to satisfy the most basic requirements of each approach. One of the more apparent
differences is that DIS sends all of the object attributes (the entity state PDU) when any attribute
changes while an RTI application sends only the changed attributes. This is so because there is
no service-based approach to do anything else. As a result, there are also differences in areas that

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 29

are implicit within the DIS specifications but are explicit (require service calls to the RTI) in the
RTI specification. As an example, in the RTI, the application programmer must request an object
(entity) ID and then instantiate the object. In DIS, each simulation assigns object IDs according
to an algorithm based on the DIS assigned site number and the host number.

4.3 HIGH LEVEL ARCHITECTURE (HLA)
There are several versions of the HLA architecture. The first, referred to simply as HLA

1.3, was sponsored by the U.S. Defense Modeling and Simulation Office. A subsequent version,
often referred to simply as 1516, is an IEEE-approved refinement to the original HLA
specification. In like manner, a new HLA standard called, colloquially, 1516 Evolved is late in
the IEEE approval process.

For the purposes of illustration, the services associated with IEEE 1516.1 will be
illustrated here. The HLA IEEE 1516.1 defines six basic RTI service groups that together
support and control federation executions and the exchange of information among federates
during a federation execution. Table 7 provides a summary of these service groups.

T able 7. HLA 1516 service groupings.

Federation Management The set of services that supports the creation, dynamic control, modification,
and deletion of a federation execution.

Declaration Management The set of services that allows joined federates to declare their intention to
either generate or receive information during a federation execution.

Object Management The set of services that allows joined federates to register, modify, and delete
object instances, and to send and receive interactions

Ownership Management The set of services that supports the transfer of ownership of instance attributes
among joined federates.

Time Management The set of services that can control the advancement of each federate along the
federation time axis.

Data Distribution Management The set of services that allows joined federates to reduce both the transmission
and reception of irrelevant data.

In the sections that follow, a brief description of each of the services is given. For a

detailed description and complete semantics of the proper section, IEEE Std 1516, High Level
Architecture (HLA)—Federate Interface Specification, should be consulted.

4.3.1 Federation Management
Federation management refers to the creation, dynamic control, modification, and

deletion of a federation execution. The functionality of these services is summarized in Table 8
and described fully in the HLA specification.

Before a federate can use any of the RTI services, it must first establish communications
with the RTI. To facilitate this connection, the HLA standard uses two separate “ambassadors.”
The first ambassador, called the RTI ambassador, allows the federate to make service requests on
the RTI. Conversely, the federate ambassador accepts requests from the RTI on behalf of the
federate.

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 30

T able 8. Federation management services.
Federation Management Service Description

Create Federation Execution The service creates new federation executions and adds them
to the set of supported federation executions. The service
needs a valid FOM document. (See IEEE Std 1516.2-2000 to
initialize a newly created federation.)

Destroy Federation Execution Service removes a federation execution from the RTI set of
supported federation executions.

Join Federation Execution The service affiliates a federate with a federation execution
indicating the intention to participate in the specified federation.

Resign Federation Execution The service indicates the requested cessation of federation
participation. Before resigning, ownership of instance attributes
held by the federate are resolved.

Register Federation Synchronization Point The Register Federation Synchronization Point service is used
to initiate the registration of an upcoming synchronization point .

Synchronization Point Achieved The Synchronization Point Achieved service informs the RTI
that a federate has reached the specified synchronization point.

4.3.2 Declaration Management (DM)
The HLA data distribution model and the associated services require that simulations

declare to the RTI their desire to generate and/or receive object and state information. These
declarations must be consistent with the FOM and are made using services described in Table 9.

In like manner, interactions generated and received by a federate must also be declared.
When a federate sends data, that data is available to all federates that subscribe to that data (e.g.,
using an Observer Design Pattern). The RTI has no services to restrict which federate
subscriptions receive data. Furthermore, the RTI does not have any understanding of the data it is
transporting (i.e., ground truth vs. perceived truth). It is assumed that federates will only
subscribe to data, and will not use information that would not normally be available to them to
make decisions that may inappropriately bias the outcome of the federation execution.

Joined federates use DM services to declare their intention to generate or use information
that is appropriate for them. There are no services to filter or otherwise check the legality or
safety of data being exchanged. A federate invokes the appropriate DM services before it
registers object instances, updates instance attribute values, and sends interactions. Joined
federates use DM services to declare their intention to receive information.

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 31

T able 9. Declaration management.
Declaration Management Service Description

Publish Object Class Attributes
Federate must explicitly state every object class it intends to produce
via this service. Only the federate that owns an instance attribute shall
provide values for that instance attribute to the federation.

Unpublish Object Class Attributes
Service for federate to unpublish a whole object class, informing the
RTI that the federate shall no longer be capable of registering object
instances of the specified object class.

Publish Interaction Class Informs the RTI of the classes of interactions that the federate will send
to the federation execution.

Unpublish Interaction Class Informs the RTI that the federate will no longer send interactions of the
specified class.

Subscribe Object Class Attributes Specifies an object class for which the RTI will notify the federate of
discovery of object instances.

Unsubscribe Object Class Attributes
Service to unsubscribe a whole class or class attributes informing the
RTI to stop notifying the federate of object instance discovery at the
specified object class.

Subscribe Interaction Class

Specifies an interaction class for which the RTI notifies the federate of
sent interactions by invoking the Receive Interaction service at the
joined federate. When an interaction is received by a federate, the
received class of the interaction shall be the interaction’s sent class, if
subscribed. Otherwise, the received class is the closest superclass of
the sent class that is subscribed at the time the interaction is received.
Only the parameters from the interaction’s received class and its
superclasses will be received.

Unsubscribe Interaction Class
The Unsubscribe Interaction Class service informs the RTI that it no
longer needs to notify the federate of sent interactions of the specified
interaction class.

Start Registration for Object Class This service notifies the federate that registration of new object
instances of the specified object class is advised.

Stop Registration for Object Class This service notifies the federate that registration of new object
instances of the specified object class is not advised.

Turn Interaction On

The Turn Interaction On service shall notify the federate that the
specified class of interactions is relevant because it or a superclass is
actively subscribed to by at least one other federate in the federation
execution.

Turn Interaction Off The Turn Interaction Off service indicates to the federate that the
specified class of interactions is not relevant.

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 32

4.3.3 Object Management

Table 10 describes object management.

T able 10. Object management.

Reserve Object Instance Name This service requests that the RTI attempt to reserve the name as a federation
execution-wide unique name.

Object Instance Name
Reserved

Notifies the federate whether the name provided in a previous invocation of
Register Object Instance Name service has been successfully reserved.

Register Object Instance The RTI creates a federation execution-wide unique object instance handle and
pairs that handle with an instance of the supplied object class.

Discover Object Instance The service informs the federate to discover an object instance.

Update Attribute Values
The service provides instance attribute values to the federation. The exact
semantics of the services depends on the time management policy. (See Section
6.6 of IEEE Std 1516.)

Reflect Attribute Value

The service provides the federate with new values for the specified instance
attributes. This service, coupled with the Update Attribute Values service, is the
primary data exchange mechanism supported by the RTI. The exact semantics of
the services depends on the time management policy. (See Section 6.7 of IEEE
Std 1516.)

Send Interaction

The service sends an interaction into the federation. The interaction parameters
are those in the specified class and all superclasses, as defined in the FOM
Document Data (FDD) . The complete semantics of the service depends on the
time-management regime being used. (See Section 6.8 of IEEE Std 1516.)

Receive Interaction
The service (see also Send Interaction for definition of interaction) provides the
federate with a sent interaction. The complete semantics of the service depends
on the time-management regime being used. (See Section 6.9 of IEEE Std 1516.)

Delete Object Instance

The service informs the federation that an object instance that has the
HLAprivilegeToDeleteObject instance attribute that is owned by the joined
federate is to be removed from the federation execution. The complete semantics
of the service depends on the time-management regime being used. (See Section
6.10 of IEEE Std 1516.)

Remove Object Instance The service informs the federate that an object instance has been deleted from
the federation execution being used (see Section 6.10 of IEEE Std 1516).

Local Delete Object Instance
The service informs the RTI that it will treat the specified object instance as if the
RTI had never notified the invoking federate to discover the object instance. The
object instance will not be removed from the federation execution.

Change Attribute
Transportation Type

Invoking the service changes the transportation type for all future Update Attribute
Values service invocations for the specified attributes of the specified object
instance only for the invoking joined federate.

Change Interaction
Transportation Type

The transportation type for each interaction is initialized from the interaction class
description in the FDD interaction class for the invoking federate only.

Attributes in Scope The service notifies the federate that the specified attributes for the object
instance are in scope for the joined federate.

Attributes Out of Scope The service notifies the federate that the specified attributes of the object instance
are out of scope for the joined federate.

Request Attribute Value
Update

The service is used to stimulate the update of values of specified attributes. When
this service is used, the RTI solicits the current values of the specified attributes
from their owners using the Provide Attribute Value Update service for owned
instance attributes.

Provide Attribute Value Update The service requests the current values for attributes owned by the federate for a
given object instance.

Turn Updates On For Object
Instance

The service requests the current values for attributes owned by the federate for a
given object instance are required somewhere in the federation execution.

Turn Updates Off For Object
Instance

The service indicates to the federate that the values of the specified attributes of
the object instance are not required anywhere in the federation execution.

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 33

4.3.4 Ownership Management
The ownership management services are used by joined federates and the RTI to transfer

ownership of instance attributes among joined federates (Table 11). The ability to transfer
ownership of instance attributes among joined federates is required to support the cooperative
modeling of a given object instance across a federation.

T able 11. Ownership management.

Unconditional Attribute Ownership
Divestiture

Notifies the RTI that the federate no longer wants to own the
specified instance attributes of the specified object instance.

Negotiated Attribute Ownership Divestiture Notifies the RTI that the federate it no longer wants to own the
specified instance attributes of the specified object instance.
Ownership is transferred only if some other federate accepts
ownership.

Request Attribute Ownership Assumption The service informs the federate that the specified instance attributes
are available for transfer of ownership to the joined federate.

Request Divestiture Confirmation The service notifies the joined federate that new owners have been
found for the specified instance attributes and that the federate is free
to complete negotiated divestiture of the specified instance attributes.

Confirm Divestiture The Confirm Divestiture service informs the RTI that the joined
federate wants to complete negotiated divestiture for the specified
instance attributes.

Attribute Ownership Acquisition Notification The service notifies the federate that it now owns the specified set of
instance attributes.

Attribute Ownership Acquisition The service requests the ownership of the specified instance
attributes of the specified object instance.

Attribute Ownership Acquisition If Available The service requests the ownership of the specified instance
attributes of the specified object instance only if the instance attribute
is un-owned by all joined federates or it is in the process of being
divested by its owner.

Attribute Ownership Unavailable The service informs the federate that the specified instance attributes
were not available for ownership acquisition.

Request Attribute Ownership Release The service requests that the federate release ownership of the
specified instance attributes of the specified object instance.

Attribute Ownership Divestiture If Wanted The service notifies the RTI that the federate is willing to divest itself
of ownership of the specified instance attributes if another federate is
attempting to acquire ownership of them.

Cancel Negotiated Attribute Ownership
Divestiture

The service notifies the RTI that the federate no longer wants to
divest ownership of the specified instance attributes.

Cancel Attribute Ownership Acquisition The service notifies the RTI that the federate no longer wants to
acquire ownership of the specified instance attributes.

Confirm Attribute Ownership Acquisition
Cancellation

The service informs the federate that the specified instance attributes
are no longer candidates for ownership acquisition.

Query Attribute Ownership The service is used to determine the owner of the specified instance
attribute. The RTI shall provide the instance attribute owner
information via the Inform Attribute Ownership service invocation.

Inform Attribute Ownership The service is used to provide ownership information for the specified
instance attribute.

Is Attribute Owned By Federate The service is used to determine if the specified instance attribute of
the specified object instance designator is owned by the invoking
joined federate.

4.3.5 Time Management
HLA accommodates a wide variety of internal time management mechanisms that foster

interoperability through time management transparency (e.g., the local time management

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 34

mechanism used within each federate must not be visible to other federates1 and yet services and
associated mechanisms provide a federation execution a way to order the delivery of messages
throughout the federation execution.) Use of the HLA time management services ensure
consistent message delivery order. Most simulations are written so that messages containing
events or updates have an associated “time stamp” and must be delivered to the receiving
federate in the correct order with respect to this time stamp. Messages that must be delivered in
the correct time order are said to be delivered in Time Stamped Order (TSO). A simulation that
is publishing time-stamped data may publish messages in any time order, and the RTI will
guarantee their delivery the in the correct time order. Other types of messages, such as
informational messages, may not have an associated time stamp, and are delivered upon arrival,
without regard to the time when the message was sent. Messages delivered in the order in which
they are received are said to be delivered in Receive Order (RO). 2

In order to guarantee the correct, time-ordered delivery of messages to a federate, the
time for each federate must be coordinated with the time of other federates. The time
management services in HLA allow this functionality.

In order for a joined federate to advance its logical time, it shall request an advance
explicitly and only by invoking one of the following services:

• Time Advance Request (TAR)

• Time Advance Request Available (TARA)

• Next Message Request (NMR)

• Next Message Request Available (NMRA)

• Flush Queue Request (FQR)

These and the other HLA time management services are explained more fully in Table 12.

1 http://www.sisostds.org/webletter/siso/iss_35/art_197.htm
2 www.ecst.csuchico.edu/~hla/LectureNotes/HLA_1.3NG_M1_P4.pdf

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 35

T able 12. Time management.

Enable time regulation The service enables time-regulation for the federate enabling it to send TSO messages.
The federate specifies its lookahead.

Time Regulation Enabled The service indicates that a prior request to enable time-regulation has been honored.

Disable Time Regulation The service indicates that the joined federate is disabling time-regulation. Subsequent
messages sent by the joined federate are sent as RO messages.

Enable Time Constrained The service requests that the federate invoking the service become time-constrained.
The RTI indicates that the federate is time-constrained by invoking the Time
Constrained Enabled service.

Time Constrained Enabled Invocation of the service indicates that a prior request to become time-constrained has
been honored. The value of this service’s argument indicates the new logical time of the
federate.

Disable Time Constrained The service shall indicate that the federate is disabling time-regulation. Subsequent
messages sent by the federate shall be sent automatically as RO messages.

Time Advance Request
(TAR)

The service requests an advance of the federate’s logical time and releases messages
for delivery to the federate. All RO messages and all TSO that are time stamped before
the specified Logical Time are delivered to the federate. Messages are received by the
Federate via Receive Interaction, Reflect Attribute Values, and Remove Object
Instance services. (See Section 8.8 of IEEE Std 1516.)

Time Advance Request
Available

The service is similar to TAR except that the RTI does not guarantee delivery of all
messages with time stamps equal to T when a Time Advance Grant to logical time T is
issued (see Section 8.13 of IEEE Std 1516).

Next Message Request The service requests the logical time of the federate to be advanced to the time stamp
of the next TSO message that will be delivered to the federate, provided that message
has a time stamp no greater than the logical time specified in the request (see Section
8.10 of IEEE Std 1516).

Next Message Request
Available

The service requests the federate to advance its logical time using the time stamp of
the next TSO message for the federate, if its time stamp is no greater than the logical
time specified in the request. It’s like Next Message Request. (See Section 8.11 of
IEEE Std 1516.)

Flush Queue Request The service requests that all messages queued in the RTI that the federate will receive
as TSO messages be delivered now (see Section 8.12 of IEEE Std 1516).

Time Advance Grant The service indicates that a prior request to advance the joined federate’s logical time
has been honored (see Section 8.13 of IEEE Std 1516).

Enable Asynchronous
Delivery

Invocation of the service instructs the RTI to deliver received RO messages to the
invoking federate when it is in either the Time Advancing or Time Granted state.

Disable Asynchronous
Delivery

Invocation of the service instructs the RTI to deliver RO messages to the invoking time-
constrained federate when the federate is in the Time Advancing state.

Query GALT The service requests the invoking federate’s current Greatest Available Logical Time
(GALT).

Query Logical Time The service requests the current logical time of the invoking federate.
Query LITS The service requests the invoking federate’s current Least Incoming Time Stamp

(LITS).
Modify Lookahead The service requests a change to the joined federate’s lookahead. The actual

lookahead is initially unchanged. (See Section 8.19 of IEEE Std 1516.)
Query Lookahead The service queries the RTI for the federate’s current actual lookahead. The current

value of actual lookahead may differ temporarily from the requested lookahead given in
the Modify Lookahead service if the joined federate is attempting to reduce its actual
lookahead. (See Modify Lookahead.)

Retract The service is used by a federate to notify the federation execution that a message
previously sent needs to be retracted (see Section 8.21 of IEEE Std 1516).

4.3.6 Data Distribution Management (DDM)
The HLA DDM services filter the simulation data received by the federates in a

federation based on the federates’ data subscriptions based on regions. Using DDM services, a
federate can also subscribe to (ranges of) attribute values. The goal is to filter as much

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 36

information as possible at the source. Producers and consumers of data communicated between
joined federates use DDM services to bound the relevance of communicated data, enabling the
RTI to recognize the irrelevant data and prevent its delivery to consumers.

The DDM is based on the following concepts:

• Dimension—A named interval of non-negative integers.

• Range—A continuous semi-open interval on a dimension with upper bound and lower
bound.

• Region specification—A set of ranges and associated dimension.

• Region realization—Associated with an instance for RTI services.

The services allow the intelligent filtering of data in a “grid” using a grid-based
architecture for an arbitrary number of dimensions and regions. The DDM is explained
completely in Section 9.1 of IEEE Std 1516, High Level Architecture (HLA)—Federate Interface
Specification. See Table 13.

T able 13. Data distribution management.

Create Region The service creates a region that has the specified dimensions. The region may be used
for either update or subscription.

Commit Region
Modifications

The service informs the RTI about changes to the ranges of the regions.

Delete Region The service deletes the specified region. A region in use for subscription or update should
not be deleted.

Register Object
Instance with Region

The service creates a unique object instance designator for the supplied object class. This
service is used to create an object instance and simultaneously associate update regions
with instance attributes of that object instance. (See Section 9.5 of IEEE Std 1516.)

Associate Regions for
Updates

The service associates regions to be used for updates with instance attributes of a specific
object instance. The association is used by the Update Attribute Values service to route
data to subscribers whose subscription region sets overlap the specified update region set
(see Section 9.6 of IEEE Std 1516).

Unassociate Regions for
Updates

The service removes the association between the regions and the specified instance
attributes.

Subscribe Object Class
Attributes with Regions

The service specifies an object class that the RTI should begin notifying the federate of
discovery of instantiated object instances when at least one of that object instance’s
instance attributes are in scope (see Section 9.8 of IEEE Std 1516).

Unsubscribe Object
Class Attributes with
Regions

The service informs the RTI that it should stop notifying the joined federate of object
instance discoveries and attribute updates for instance attributes of the specified object
class in the specified region (see Section 9.9 of IEEE Std 1516).

Subscribe Interaction
Class with Regions

The service specifies the class of interactions that are delivered to the federate, taking the
region into account. This service and subsequent related RTI operations shall behave
analogously to the Subscribe Interaction Class service as described in Table 8. (See
Section 9.10 of IEEE Std 1516.)

Unsubscribe Interaction
Class with Regions

The service informs the RTI to no longer notify the federate of interactions of the specified
class that are sent into the specified region.

Send Interaction with
Regions

The service sends an interaction into the federation. The interaction parameters will only
be those in the specified class and all superclasses, as defined in the FDD. The regions
shall be used to limit the scope of potential receivers of the interaction. (See Section 9.12
of IEEE Std 1516.)

Request Attribute Value
Update with Regions

The service is used to stimulate the update of values of specified attributes. The resulting
Provide Attribute Value Update service invocations issued by the RTI are consistent with
the region sets provided to this service. (See Section 9.13 of IEEE Std 1516.)

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 37

4.4 TEST AND TRAINING ENABLING ARCHITECTURE (TENA)
The computational metaphor of TENA is different from the protocol-based DIS or more

service-oriented architectures of CTIA or HLA. TENA’s Domain-Specific Software Architecture
is a specification of the common software building blocks of a domain, based on a set of objects
that model that domain that leads to a pool of reusable, interoperable, composable applications. It
is through calls on objects within this framework that a simulation is constructed and executed.

A meta-model is a description of the features available for use in formulating an object
model. Since the TENA Object Model itself is the “language” that provides the basis for
interoperable communication between TENA systems, this “language” must be based on a meta-
model that is sophisticated enough to be able to handle any type of information the TENA
community may need to represent.

There are three main categories of service that the TENA middleware must support.
These services provide the underlying functionality for the different types of TENA simulation
information that need to be encoded and standardized. These three services can be summarized
as objects with definite lifetimes during the logical range (i.e., simulation execution):

1. Stateful Distributed Objects (SDOs)
2. Transient objects (messages)
3. Streaming information (data streams).

SDOs are objects that have a non-zero lifetime and have a state that evolves during the
execution of the simulation. They have remotely invocable interfaces and a publication state that
is disseminated to client applications.

An SDO is a combination of two powerful concepts: a distributed object paradigm (like
the one used in CORBA) and a distributed publish and subscribe paradigm (like the one used in
HLA). “A conventional distributed object-oriented system offers no direct support to the user for
disseminating data from a single source to multiple destinations. A conventional publish-
subscribe system does not provide the abstraction of objects with a set of methods in their
interface. An SDO is an object that provides a location-transparent interface to its methods as
well as the notion of publication state. The publication state of an SDO is data that is
disseminated from the creator of an instance of an SDO to all parties that have indicated their
interest in that SDO’s data through a subscription. Interested subscribers receive [proxies] to
SDOs. With an SDO [proxy] a subscriber can invoke methods on its interface, as can be done
with a CORBA [proxy] to a distributed object. In addition, an SDO [proxy] provides the
programmer the ability to read the publication state of the SDO as if it were local data, as can be
done in many distributed shared memory systems.”3

3 Nooseworthy, J. R., “IKE 2–Implementing the Stateful Distributed Object Paradigm,” in Proceeding of the 5th IEEE

International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC 202), 29 Apr–1 May 2002.

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 38

An SDO exists only in a single application, in a single process space. This application is
called the “server” or “owner” of this particular SDO. There is only one owner application of any
particular SDO instance at any one time. The SDO instance itself is called the “servant.” Proxies
to this servant that have a local cache of the servant’s publication state may exist in any
application in the logical range, including the server application. This concept is illustrated in
Figure 13.

Figure 13. SDO proxies and servants: Their contents and relationships.

An SDO may singly inherit from another SDO. An SDO may also implement multiple
interfaces. Interfaces, like those in the Java programming language, are named sets of operations.
An SDO may implement as many interfaces as it needs to. The actual implementation of the
methods is done by the logical range developers when they define and create an object in the
LROM.

Composition is the most important aspect of the TENA meta-model. The ability to
construct SDOs that contain other SDOs is critical to the creation of a standard set of reusable
TENA object definitions. Since the TENA meta-model allows composition, TENA object model
developers can focus their efforts on standardizing small, reusable, “building block” objects,
rather than having to define the entire object model all at once.

The remotely invocable methods on an object are intended for one-to-one
communication, in which an object or application wants to communicate something to a specific
single object. Publication state, on the other hand, is intended for one-to-many communication,
because an object’s publication state is disseminated to many recipients.

Messages are single transient bundles of information that are published by applications
and consumed by subscribing applications. Messages represent single instantaneous objects that
may be transmitted between publishers and subscribers. Messages, like SDOs, support single
inheritance for implementation, multiple inheritance of interfaces, and composition. Messages

Class Name

Remote Methods
Interface

SDO Proxy

Publication State
Valuetype

Attribute
Cache

Get Methods

Class Name

Remote Methods
Interface
and Implementation

SDO Servant

Forwards invocations

Returns results

getget

Local Methods

Publication State
Valuetype

Attributes

Get/Set Methods

getget

Local Methods

Disseminates

set

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 39

are intended for one-application-to-many-applications communication. For single-application-to-
single-application communication, the Application Management Object is used.

Data streams represent repetitive, isochronous streams of information, such as audio,
video, or telemetry. Data streams have fallen into disuse since high-quality existing commercial
protocols for voice and video usually provide an adequate mechanism for transmission of these
types of information.

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 40

5 SUPPORT TOOLS

A common theme with each of the architectures is the addition, either by an architecture
distributor, by an architecture vendor, by third parties, or developed by end users, of useful
support tools that allow LVC simulations to work with external entities. These external entities
can be the simulation operators, end users, simulators, stimulators, or simulation management
systems (such as gateways to other simulation architectures), to name just a few examples. This
section presents an overview of the support tools available for each of the four architectures we
examined.

There are more support tools available than can be listed within a document such as this.
For this reason, categories of support tools are presented, with a listing of example support tools.
The categorizations used are those that the vendors use for their products and should not be
interpreted as the categorizations of support tools that may result in the overall Convergence
Team effort or work by other teams within the LVCAR implementation project. Also, mention of
a specific tool does not constitute endorsement of that tool.

5.1 COMMON TRAINING INSTRUMENTATION ARCHITECTURE (CTIA)
SUPPORT TOOLS

As described in Section 4.1, the CTIA architecture has a collection of services and
instrumentation capabilities that serve as APIs to allow support tools access to data and data-
exchange components of a running CTIA distributed simulation. In the CTIA architecture, the
word “component” is formally defined as plug-ins that allow modular software to be added. This
holds true for the support tools, which are treated as components. They are numerous and
provide a rich environment for the developer/integrator to use.

The support tools for CTIA are in the categories of planning, system control, exercise
control, data collection, battlefield realism, tactical analysis and feedback, and infrastructure. The
CTIA community refers to these categories as “Functional Capability Groups.” Each of these is
addressed in a subsection below. The description of each of these tools was extracted, in whole
or in part, from the Live Training Product Line (LT2) Overview Briefing [ctia03]. Some of the
tools listed were developed specifically for the LT2 project, and the details for this are listed in
the briefing if this distinction is of interest to the reader.

5.1.1 Planning
This section covers the CTIA planning components.

5.1.1.1 Battle Roster
The Battle Roster is used during exercise planning to import battle roster data into the

CTIA exercise database. A typical battle roster contains a list of participants that are being
trained in an exercise.

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 41

5.1.1.2 Combat Training Center (CTC) Data Collection Plan Toolset
The Data Collection Plan (DCP) Toolset provides the ability for a database administrator

to easily manage and manipulate data within a DCP database. The DCP database contains
training manuals composed of data defined by complex relations. The goal of the DCP toolset is
to take the rather complex process of managing/updating the data and turn it into a simple
process for an end user.

5.1.1.3 DCP Editor
The purpose of the DCP Editor is to create and edit the Training Database, thereby

constructing the source for procedures, process, data, and information by which the Training
System appraises unit, leader, and soldier performance. This database provides all the necessary
information to trainers and training analysts to achieve comprehensive and objective feedback to
the training unit. Its primary purpose is to support the AAR, and its secondary purpose is to
support the Take Home Package (THP).

5.1.1.4 Embedded Battle Roster
The Embedded Battle Roster provides the functionality to manipulate a battle roster.

5.1.1.5 Force Structure
Force Structure is a CTIA-compliant component that is responsible for creating and

editing force structures.

5.1.1.6 Instrumentation Scan
The Instrumentation Scan component can be used to help facilitate the automation of

creating battle rosters, issuing player unit hardware to individuals, and recovery of player unit
hardware upon exercise completion. This is accomplished by scanning player unit hardware and
individual’s common access cards and compiling a file that can then be imported into the system.

5.1.1.7 Range Data Editor
The Range Data Editor component can be used to manage the allocation of range assets

(e.g., targets, target lifters, cameras, etc.) to a specific range and information associated with
their use at that range.

5.1.1.8 Range Tracking Admin Tool
The Range Tracking Admin Tool is a component designed to create and manage

situational awareness (SA) regions and tracking control (TC) regions for gunnery ranges.

5.1.1.9 Roles and Permissions
This collective function provides a graphical user interface (GUI) for editing user roles

and data access permissions.

5.1.2 System Control (SYSCON)
This section covers the CTIA system control components.

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 42

5.1.2.1 2D Map
The Two-Dimensional (2D) Map component provides map functionality in a stand-alone

map component and as an interface to be used by other LT2 components. The 2D Map
component provides an API that allows other LT2 components to provide specialized views of
the battle space.

5.1.2.2 3D Viewer
The Three-Dimensional (3D) Viewer component provides both a stand-alone component

and an embeddable component to be used as part of a composite system.

5.1.2.3 Asset Database Resource Manager (ADRM)
The Asset Database Resource Manager component is responsible for assisting the user

with the allocation and management of training resources for instrumented, live collective
training exercises. This component will typically be used during the planning phase of an
exercise. The component will provide users with the capability for creation, import, and retrieval
of equipment data into/from the asset database.

5.1.2.4 Combat Training Center System Control (SysCon)
SysCon provides the ability for the Tactical Control Officer (TCO) to define a rotation,

prepare a rotation, run a rotation, and manage a rotation.

5.1.2.5 CTIA Explorer
The CtiaExplorer is a .Net application that dynamically queries instances of CTIA

services for information on exercises, components, entities, and tracking control regions.

5.1.2.6 Digital Tactical Monitoring
The CTC Digital Tactical Monitoring (DTM) component interfaces with the Tactical

Message Database and Common Training Instrumentation Architecture Services to provide a
way to monitor tactical messages within CTIA Services. The CTC DTM component takes new
tactical messages and sends them to CTIA Services as the appropriate event.

5.1.2.7 Event Generator
The Event Generator Processor (EGP) is a non-interactive processor that takes CTIA

tracking events and performs analysis on them to determine if a derived event needs to be
published. The processor will publish line-crossing, area-entry, and area-exit events based upon
tracking data updates in respect to the tactical graphics in the system.

5.1.2.8 GPS Support
The Global Positioning System (GPS) Support contains three main components: the GPS

Base Station, GPS Tracker, and Military Grid Reference System (MGRS) Display.

5.1.2.9 Instrumentation Status and Control (ISC)
Instrumentation Status and Control (ISC) provides the ability for the TCO to monitor the

status of various instrumentation devices, such as Player Units (PUs), and send them commands.

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 43

5.1.2.10 Pairing Processor
The Pairing Processor is a non-interactive component that captures and analyzes CTIA

events to determine if a derived event needs to be published. The intention of the Pairing
Processor is to pair related events based on strictly defined criteria set. The Pairing Processor
subscribes to the CTIA Services component to receive all Weapon Fire and Hit Detection
Events. As these events are received from CTIA Services, the Pairing Processor adjudicates the
events to determine if they are truly events that should be paired.

5.1.2.11 System Control (SYSCON)
The System Control (SYSCON), which is separate and different from the CTC SysCon

component, is an interactive CTIA-compliant component that has two main purposes: monitoring
ranges, and managing and creating Training Events and runs. The SYSCON component provides
a set of displays that allow the user to monitor the current status of all the range complex
instrumentations that communicate with the Range Operations Center (ROC).

5.1.2.12 System Technical Monitoring (STM)
The STM system collects and presents status information about hardware and software

executing in a distributed network. The information is gathered through a number of different
mechanisms, including Simple Network Management Protocol (SNMP) and operating system
calls.

5.1.2.13 Tracker Monitor
The Tracker Monitor application monitors the master exercise and instructs simple

trackers and trackers to join a particular rotation exercise based on the configuration defined at
its creation.

5.1.3 Exercise Control (EXCON)
This section covers the CTIA exercise control components.

5.1.3.1 Ad Hoc Query Tool
The LT2 Ad Hoc Query is a component designed for making LT2 GUI Framework

widgets available in Microsoft Office applications for the purpose of creating custom CTIA
Exercise Reports.

5.1.3.2 Alarms and Alerts
The Alarms and Alerts Component (AAC) is a component developed for analyzing,

publishing, and detecting Alarm and Event Subscriptions. The user can specify when to be
notified by specifying conditions within Rules, which will trigger an Alarm. Alarms are usually
safety issues that are exercise-global and are received by all users. The user is capable of
subscribing to events from any point in time during the exercise. As these events occur or are
retrieved from the system, they are sent to the Inbox Component.

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 44

5.1.3.3 Close Air Support (CAS) Mission Editor
The Close Air Support Mission Editor Tool (CAST) is an interactive GUI application

provided to support the creation, management, and execution of close air support missions.

5.1.3.4 CTC Reports
The CTC Reports component provides report templates for Observer Controllers to

submit standardized reports electronically. Reports can be filed when an event occurs while
others are filed on a daily basis or a mission basis.

5.1.3.5 Derived Tracking Processor
The Derived Tracking Processor is a non-interactive component designed to provide

tracking events for entities that depend on another entity’s tracking data.

5.1.3.6 Entity Commander
The Entity Commander component provides a set of commands available to update

controlled entities.

5.1.3.7 Entity Property Grid (EPG)
The Entity Property Grid (EPG) LT2 component was developed to display element

properties and the values associated with those properties.

5.1.3.8 The Exercise Controller
The Exercise Controller (EXCON) orchestrates an aggregate of components for the

execution of Tank and Bradley Gunnery Qualification for digital ranges. Runs are instances of
scenarios composed of Steps based on Army doctrine.

5.1.3.9 Exercise Assistant
The Exercise Assistant component provides a configurable GUI used to guide the user

through the steps involved for each state of an exercise.

5.1.3.10 Exercise Manager
The Exercise Manager provides configuration, control, and views of the CTIA Exercise

instantiations in the system.

5.1.3.11 Exercise Tree
The Exercise Tree is a component used for viewing and editing objects relevant to the

training audience.

5.1.3.12 Inbox
The LT2 Inbox integrates Microsoft Outlook with a CTIA system, allowing users to

view, manage, and interact with CTIA Observations, Reports, Alerts, and Battle Space Events as
familiar email-like messages. Once these items are placed in the Inbox, they can be managed like
any other Outlook email message using Outlook’s searching, filtering, sorting, and grouping
capabilities.

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 45

5.1.3.13 Participant Definition
The purpose of the Participant Definition Tool (PDT) component is to allow the end user

to create/edit participant entities as part of an exercise. Participants are entities such as personnel,
weapon, equipment, and platforms that the user wishes to track during an exercise.

5.1.3.14 Playback
The Playback component enables users to replay activities that occurred in a training

exercise. Its purpose is to create objective replays of the battlespace/environment surrounding a
unit undergoing training. The result is suitable for use as an input to the production of formal
AARs. The Playback component may also be used as a presentation tool by lower-echelon
observer/controllers (OCs) to provide replays within less formal AAR settings in the field.

5.1.3.15 Player Cache
The Live Training Transformation (LT2) Player Cache component provides a centralized

cache for lifeform, platform, equipment, and firing weapon entities within an exercise.

5.1.3.16 Player Status
The Player Status LT2 component was developed to display the status of all of the

entities in the running exercise.

5.1.3.17 Preferences Editor
The Preferences Editor provides a GUI to create and edit client application configuration

settings. These configuration settings (or “preferences”) include the specification of colors, fonts,
dates, or primitive values (types such as ints, floats, and strings). They may also include domain
data like location coordinates or CTIA object identifiers. Preferences can be defined at three
levels: system, team, and user.

5.1.3.18 Replay
The Replay LT2 component was developed to replay past tactical events in an exercise to

LT2 visualization tools.

5.1.3.19 Rolling Combat Power (RCP)
The purpose of the Rolling Combat Power (RCP) component is to allow the end user to

evaluate the combat effectiveness of a unit based upon the status of participants in that unit and
the unit’s supplies.

5.1.3.20 Scenario Controller
The Scenario Controller is a CTIA-compliant component that is responsible for

commanding and controlling physical range assets during an exercise and that provides all of the
logic involved in executing an exercise. These assets include, but are not limited to, targets,
battlefield effect devices (BEDs), and field cameras.

5.1.3.21 Tactical Net Selector (TNS)
The Tactical Net Selector (TNS) component provides the Tactical Analysis and Feedback

(TAF) workstations with the ability to monitor radio traffic, play back recorded radio traffic, and

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 46

create tags that are stored in the CTIA Database (version 8B). TNS will also provide the TAF
workstation with the ability to search for recorded clips or tags that are stored in CTIA.

5.1.3.22 T-RECCS
The Training Range Exercise Command & Control Suite (T-RECCS) provides two

executable applications that offer a core set of training functionality via multiple LT2
components. An Administration application is used for system configuration and range
maintenance while a Training Range Exercise Command and Control application is used for the
planning, execution, and recovery of a training exercise.

5.1.4 Data Collection
This section covers the CTIA data collection components.

5.1.4.1 Bookmark Tool
The Bookmark Tool component is a non-interactive processor developed for recording

SA data from a live exercise to disk.

5.1.4.2 CIC Processor
The Combat Information Center (CIC) Processor is a CTIA-compliant component that

acts as a gateway between Air Combat Maneuvering System (ACMS) Player Units and CTIA
Services.

5.1.4.3 Common Player Unit Controller
The Common Player Unit Controller provides translation services between CTIA events

and XML messages defined by the PU-CTIA Common Messages Set Interface Control
Document (see Asset Browser-ICD).

5.1.4.4 Contact Report
The Contact Report component allows a user to create or edit a report that marks the

time, state, personnel, and equipment involved in an engagement. The report also identifies the
initiator of the engagement and the missions related to the engagement.

5.1.4.5 Event Log
The Event Log is a GUI CTIA-compliant component that displays CTIA events in real

time. The events that are displayed are configurable via a real-time filtering mechanism within
the event log. The filtering mechanism allows a user to pick which events the user wishes to see
and which events the user does not wish to see.

5.1.4.6 GPS Processor
The GPS Processor is a CTIA-compliant component that provides one-way

communication from the Lassen GPS hardware unit to CTIA Services. The GPS Processor reads
the data from the GPS unit via a serial connection that translates the data into three different
CTIA messages that consist of the following: Earth Centered Earth Fixed (ECEF) X, Y, Z
correction coordinates, GPS Version, and GPS Usability (Figure of Merit, or FOM).

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 47

5.1.4.7 Instrumentation Issue and Recovery (IIR)
The Instrumentation Issue and Recovery (IIR) component records the issuance of live

training scoring equipment to live training participants, associating that equipment to objects in a
live training monitoring system, and recording the recovery of that equipment.

5.1.4.8 Observation Lite
The LT2 Observation Lite component is developed for creating, viewing, editing, and

deleting observations.

5.1.4.9 Observation Recording Tool (ORT)
The Observation Recording Tool (ORT) component is developed for creating, viewing,

and editing observations based on doctrine defined within the Data Collection Plan (DCP)
Editor.

5.1.4.10 Obstacle Report
The Obstacle Report is an integrated component of the Information & Communication

Technology Services (ICTS) Desktop. The tool is used to create Obstacle entities of various
types for use in a training exercise.

5.1.4.11 Player Unit Check Out Tool
The PU Checkout Tool is a CTIA-compliant component that uses CTIA Services to

gather information for PUs so that personnel at the Vehicle Install Pad can checkout a PU’s data
as received by and distributed by CTIA Services. The Vehicle Install Pad is where users
physically install PU hardware onto vehicles.

5.1.4.12 Target Event Processor (TEP)
The Target Event Processor (TEP) acts as a gateway between the Universal Target

Controller (UTC) and CTIA Services. When commanded, the TEP publishes CTIA Participant
Events for the commanded targets into the other instances of CTIA Services. These Participant
Events represent the current state of the targets as related to the CTIA Exercise.

5.1.4.13 Weather Station Lite (WSL)
The Weather Station Lite (WSL) is a CTIA-compliant component that acts as a gateway

between the WMR968 weather station hardware and CTIA. It reads messages from the
WMR968 and converts the messages into CTIA state messages that are dispatched into CTIA
Services.

5.1.5 Battlefield Realism
This section covers the CTIA battlefield realism components.

5.1.5.1 Area Weapons Effects Simulation (AWES)
Area Weapons Effects Simulation (AWES) provides simulation of area weapons effects

for the Combat Training Center On-Line Information System (CTC-OIS), offering full-spectrum
operations in a contemporary operational environment.

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 48

5.1.5.2 Command and Control Suite (CCS) to CTIA Gateway (NTC-specific local system)
The Security Gateway (SEGW) Tactical Communications Group (TCG) will enable

CTC-OIS to achieve interoperability with external systems and simulations, such as legacy
constructive simulations by providing translation services between the CTC-OIS and external
systems.

5.1.5.3 Common Player Unit Gateway
The Common Player Unit Gateway provides an abstraction layer to facilitate common

Gateway Control (GC) Messages to and from a gateway. The abstraction layer provides a simple
API that gateways can use to send the most common GC Messages. The functionality provided
by the Common Player Unit Gateway includes the initial client connection, status requests,
receiving reports from player units, and sending request to player units.

5.1.5.4 Common Player Unit GC Message Service
The Common Player Unit GC Message Service Component is defined by the Common

Message Set Interface Control Document. This Interface Control Document describes in detail
the requirements needed to standardize a communications mechanism between instrumented
player units and CTIA. Data exchanged between gateways and controllers is done via XML.

5.1.5.5 Common Player Unit JTRS Gateway
The Joint Tactical Radio System (JTRS) Gateway runs as a console application and

connects to a JTRS base station. The gateway receives player unit reports from the JTRS base
station. These reports are converted into GC Messages and sent to the Common MUX.

5.1.5.6 Common Player Unit Multiplexer (MUX)
The MUX facilitates the bidirectional messaging of data between gateways and

controllers. The MUX does not perform any operations on the data; it simply routes the traffic to
the correct client.

5.1.5.7 CTIA JLVCDT Adapter
The Joint Live Virtual Constructive Data Tool (JLVCDT) is an application intended to

reduce the number and complexity of translators used in LVC training environments through the
development and employment of an extensible translator framework. The framework provides a
system and software architecture capable of rapidly integrating, configuring, controlling, and
monitoring the execution of new and existing modules.

5.1.5.8 DIS to CTIA Gateway
The DIS to CTIA Gateway enables CTC-OIS to achieve interoperability with external

systems and simulations, such as legacy constructive simulations, by providing translation
services between the CTC-OIS and the DIS network.

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 49

5.1.5.9 DIS to XML Gateway
The DIS to XML Gateway enables CTC-OIS to achieve interoperability with external

systems and simulations, such as legacy constructive simulations by providing translation
services that convert DIS PDU messages into an XML format.

5.1.5.10 Fire Finder Radar
The Fire Finder (FF) Radar feeds a live radar system and is a simulated fly out. The

software package includes simulation of FF Radars and the ability to interface to FF Radar to
collect radar settings and simulate the radar returns.

5.1.5.11 Fire Support Tool
The Fire Support Tool (FST) is an interactive GUI application provided to support the

creation, management, and execution of indirect fire missions. It also has the capability of
defining chemical, biological, radiological, and nuclear areas.

5.1.5.12 Fire Support Tool Lite
The FST Lite is an interactive GUI application provided as part of the AWES subsystem

that provides the users with the capability to easily create indirect fire and improvised explosive
devices (IEDs) in the CTIA.

5.1.5.13 Gateway Entity Filter GUI
The Gateway Entity Filter GUI enables CTC-OIS to achieve interoperability with

external systems and simulations, such as legacy constructive simulations, by providing a means
to control entity filtering through the gateways.

5.1.5.14 XML to CTIA Gateway
The XML to CTIA Gateway enables CTC-OIS to achieve interoperability with external

systems and simulations, such as legacy constructive simulations, by providing translation
services between the XML formatted messages and CTIA message formats.

5.1.6 Tactical Analysis and Feedback (TAF)
This section covers the CTIA Tactical Analysis and Feedback (TAF) components.

5.1.6.1 After Action Review (AAR)
The AAR Tool enables streamlined creation of AAR materials, including choreography

for presentations that may occur on a variable number of output devices and to enable more
versatile presentation capabilities for use in different AAR venues.

5.1.6.2 Battle Damage Assessment
The AWES provides simulation of area weapons effects for the CTC-OIS, offering full-

spectrum operations in a contemporary operational environment.

5.1.6.3 CTC Queries
CTC queries and views will be stored in the database, as will any supporting procedures.

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 50

5.1.6.4 Field Camera Controller
The Field Camera Controller is a CTIA-compliant component that provides the capability

to command camera mounts to point to specified locations via presets that have been
programmed into the camera mounts via a Pelco keyboard or optional GUI. This component also
allows the user to switch between color and forward-looking infrared (FLIR) cameras that are
mounted on the camera mount, to power the FLIR camera up and down, to command a camera to
zoom in or out, to command the camera mount to tilt up and down and pan left and right, and to
open and close the aperture.

5.1.6.5 Miniature Networked Spectrum Monitoring and Engineering Control System
The Miniature Networked Spectrum Monitoring and Engineering Control System (Mini-

SMECS) system is a versatile RF spectrum monitoring and recording system. The Mini-SMECS
system supports a network of ruggedized broadband monitoring points that provide continuous
monitoring and recording of RF spectrum use over a wide geographical area.

5.1.6.6 Report Generator Tool
The Report Generator Tool allows any application that runs within the LT2 GUI

Framework to generate PowerPoint reports based on events that have occurred in the past.

5.1.6.7 Vehicle Video Control
The Vehicle Video Controller is a CTIA-compliant component that provides the

capability for a user to assign a player unit’s video cameras to one of the available channels.

5.1.6.8 Video System Suite
The Video System Suite (VSS) is an LT2 component that enables users to view, record,

and replay video and audio feeds from range and vehicle video cameras on instrumented, live
training ranges.

5.1.7 Infrastructure Tools
This section covers the CTIA infrastructure components.

5.1.7.1 CTC COTS Support
Commercial off-the shelf (COTS) Support allows the COTS products to easily integrate

into the overall system and uses the functionality of the COTS product to meet system
requirements.

5.1.7.2 Data Access Layer
The Data Access Layer is a CTIA-compliant component that provides a uniform

framework for accessing range assets and scenario data from the Asset and Data Collection Plan
(DCP) databases, respectively.

5.1.7.3 DRTS Parametric Database
Live fire range training requires the use of parametric data to store target characteristics,

target exposure times, weapon characteristics, ammunition characteristics, and platform

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 51

configurations and characteristics. This component defines Oracle database tables that should be
used by components needing this type of data and that intend to be compatible with the Digital
Range Training Systems (DRTS) product (aka Instrumented Ranges program).

5.1.7.4 Entity Type Editor
The Entity Type Editor provides a user interface to view, create, and update entity types

for use in CTIA.

5.1.7.5 Exercise Builder
The Exercise Builder component provides a GUI interface that allows users to perform

the CTIA setup tasks prior to running an exercise. The setup tasks include the following:
establish a new exercise name, create a new training exercise, create an instance of the exercise
database, initialize the instance as a JBoss™ database (www.jboss.org), and create the SA
region.

5.1.7.6 FBCB2
The Force Battle Command, Brigade-and-Below (FBCB2) component is a CTIA-

compliant component that provides the capability to create, edit, manage, send, and receive a
subset of the Joint Variable Message Format (JVMF) message set.

5.1.7.7 JBUS Adapter
The Joint BUS (JBUS) is an application intended to reduce the number and complexity of

translators used in LVC training environments through the development and employment of an
extensible translator framework.

5.1.7.8 Lite Services Framework
The CTIA Lite Services Framework (LSF) provides the capability to selectively define

implementations of CTIA services.

5.1.7.9 LT2 GUI Framework
The purpose of the GUI Framework is to establish a library to assist the developer in the

implementation of LT2 components while retaining a common look and feel to the user. An
integrated GUI is achieved by using features such as a common desktop to house the tools, drag
and drop between tools, menu options within one tool that trigger actions in another tool, and a
common preferences storage system, to name a few.

5.2 DISTRIBUTED INTERACTIVE SIMULATION (DIS) SUPPORT TOOLS
The DIS standard itself does not define tools. However, the DIS protocol was designed to

make common tools easy to develop and use. Being an on-the-wire protocol, DIS Protocol Data
Units (PDUs) lend themselves to be easily manipulated, stored, filtered, analyzed, and
visualized.

The subsections below are the categories (“families”) of tools for DIS, with a short
description and examples. An example of a DIS configuration is shown in Figure 14.

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 52

Figure14. Example DIS configuration.

5.2.1 Middleware
Middleware is the lowest user-level (as opposed to system-level) software that provides

access to a network. Since all modern operating systems use a sockets-based network system
interface, middleware is the layer that interfaces a network service at the Application
Programming Interface level (the middleware API) to the sockets interface.

Since DIS is a straightforward protocol, the simplest DIS middleware simply uses the
actual PDU format as its API, along with functions for initialization, sending, and receiving
PDUs. That way, a user who is familiar with DIS already understands a large portion of the
middleware API. DIS middleware may be as simple as providing the sockets interface, byte
swapping on Little Endian computers, some type of PDU buffering, dead reckoning, and entity
timeouts. More complex middleware adds PDU filtering, PDU format verification (preventing
crashes caused by badly formed PDUs) and other error checking, heartbeats and timeouts for all
objects (entities, radios, emitters, etc.), an object-oriented API, multicast group management, and
entity and object databases with associated services (e.g., filtering out all PDUs associated with
an entity that is too far away to be interesting). The most complex middleware can support
multiple network technologies. Middleware packages that support DIS, HLA RPR FOM, and
TENA with a single API have been developed.

Typically, an “adapter” software layer glues the internal simulation model data format to
the middleware API. The adapter is thus specific to a particular simulation internal design.

Examples: MaK VR-Link

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 53

5.2.2 Gateway
A gateway is a protocol-specific application that performs some type of conversion or

filtering of PDUs. These often exist at the local area network (LAN)-to-wide area network
(WAN) boundary for the purposes of converting LAN broadcast addresses into unicast addresses
that can traverse the WAN. Filtering is done here to reduce the PDU traffic on a WAN with
limited bandwidth. Other types of PDU translation can be done to link DIS simulation exercises
that were not originally designed to interoperate with each other, thereby reducing or eliminating
expensive software changes in the simulators themselves. Gateways may be DIS to DIS
(relatively easy to implement) or a more complicated DIS to HLA, TENA, etc.

Examples: MaK Gateway, Redsim DIS PDU Router

5.2.3 Visualization
A visualization is a graphical application that attaches to a DIS network for the purposes

of viewing the events in the exercise in real time or by reading a log file for AAR. Two-
dimensional visualization shows icons on a map view with the ability to pan and zoom. Three-
dimensional (3D) displays add the ability to “tilt” to better visualize events in the vertical axis. It
also adds 3D models of entities and terrain. A “stealth” is a 3D viewer that can attach its
eyepoint to a particular entity (or group of entities) and move with it, either from the operator’s
view inside the vehicle or tethered outside in some way.

Examples: MaK Stealth and Plan View Display

5.2.4 Simulation Manager
A simulation manager is an application that controls a distributed simulation exercise

using Simulation Management (SIMAN) PDUs. It is used to select a scenario, select a set of
simulators to participate, start, freeze, and stop the exercise (or individual simulators), and
display events and error conditions. Often, the Simulation Manager is combined with
Visualization to form an Instructor Operator Station (IOS), where a training instructor sits to
conduct an exercise.

A note of interest: There are IOS applications for large training systems that use only DIS
PDUs for their network communication. There is no backchannel connection to the individual
simulators in these systems. This eliminates the need for another network (since the DIS network
already connects the IOS and all simulators) or for another type of protocol and middleware.

5.2.5 Logger/Playback
A logger/playback is an application that connects to a DIS network and logs PDUs during

the course of a simulation exercise. Loggers are typically as simple as storing every PDU on the
network in binary form in a log file, along with a timestamp and possible the source address of
the PDU, thus being very fast and efficient. Playback simply transmits the logged PDUs in order

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 54

at the right time intervals based on the log timestamps. Playback can be in real time, sped up,
slowed down, or skipped ahead or back, if necessary. DIS loggers also often have associated log
reader applications that display the contents of a log file in a human-readable format.

Examples: MaK Data Logger, Redsim DIS PDU Logger and Recorder

5.2.6 Analyzer
An analyzer is an application that processes PDUs to glean information about exercise

results, error conditions, and network bandwidth use, and to verify the proper operation (dead
reckoning, heartbeats) and use following DIS rules. Some analysis can be done on live network
traffic, but it is more common to analyze log files so that the analysis can be repeated or run
differently, if necessary.

Example: Redsim DIS Link Monitor

A general-purpose protocol analyzer (“packet sniffer”) is a useful tool for integrating and
debugging DIS simulations. By being in the middle of the network transactions, this is invaluable
for isolating problems to either the sender or receiver. Because DIS specifies the on-the-wire
protocol, any standard sniffer can at least produce a hexadecimal dump of PDU contents. The
popular Wireshark (formerly Ethereal) open source analyzer tool can be extended with
“dissectors” that understand the DIS PDU format and display it in a more human-readable
format.

5.2.7 Test Generators
These applications can generate typical DIS PDU traffic usually for the purposes of

testing middleware and simulators. The amounts and types of PDUs can be configured, and the
data content can be controlled to some degree.

Example: Redsim DIS PDU Generator

5.2.8 After Action Review (AAR)
The AAR is a collection of applications that provide a higher level of analysis of

simulation exercise results. In training exercises, these tools show the student what happened and
why, helping to complete the learning experience. AAR usually combines logging, playback, and
visualization, often using the same tools used during simulation run-time for those purposes.
AAR uses information not only from the DIS log file but also from other sources of recorded
information such as video and internal simulator data back-channeled to the AAR system.

5.2.9 Software Development Tools
These tools are usually tied to specific DIS middleware packages so there are no

standardized or common tools. Even though the DIS protocol isn’t formally specified, there has
been some work in defining it in a machine-readable format such as XML. This allows

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 55

automated code generation of parts of the middleware, such as the byte swapping. Now that DIS
Version 7 is more extensible, there are plans to develop a formal specification for the records
that can be created to extend DIS PDUs. However, this work is only conceptual at this point in
time.

The DIS Enumerations document describes a large set of enumerations useful in
distributed simulation. The bulk of the document is long lists of entity and object types. These
enumerations are also widely used outside the DIS community. There has been a demand for a
machine-readable version of this document. An XML schema has been developed, along with
tools to convert the XML version of the enumerations into a format that can be properly
displayed in Word, Excel, or a web browser, or imported into an SQL database. It is foreseen
that the next release of the Enumerations document in 2010 will be in XML form and some
associated tools delivered with it.

5.3 HIGH LEVEL ARCHITECTURE (HLA) SUPPORT TOOLS
A number of vendors and distributors provide Run-Time Infrastructure (RTI)

implementations, and for each, there are support tools that they provide to enhance their product
offerings. Once again, mention of any tools in this section does not imply endorsement. These
support tools tend to fall into a common set of categories. The Federation Development and
Execution Process (FEDEP) [ieee04], which provides a process for development and execution
of HLA-conformant distributed simulations, includes a listing of common support tools.

The FEDEP makes reference to the following:

1. Federation execution control (examples are hlaControl, Virtual Control, Pitch
Commander, and FedDirector)

2. Federate execution control
3. Object model development tools (examples are OMDT Pro and Visual OMT)

4. Data collection (examples are hlaResults, Pitch Recorder, and MaK Data Logger)

hlaControl™ provides features that assist the management and control of the federation,
as listed below:

• Performance and Control: Provides a single point of monitoring and control of
distributed HLA federation status and performance metrics.

• Intelligent Federation Management: Allows the intelligent monitoring of complex
multi-platform distributed environments.

• Design for Life Cycle Planning: Support for the HLA FEDEP.

• Visual Monitoring and Analysis: Provides graphical display that indicates problems
and status during federation executions.

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 56

hlaResults™ provides data collection, playback, and analysis, as listed below:

• Collect and analyze data during execution and define playback tracks to play back any
specific portion of an exercise.

• Graphical interface allows the development of data capture and data playback plans.

• Generation of database schemas for collection.

• Options to replay specific portions of an exercise.

Virtual Control™ has been developed specifically to monitor, control, and analyze
distributed modeling and simulation and live training environments. It provides a floating user
interface to allow maximum flexibility of enterprise control. It also reduces troubleshooting the
communication with an infrastructure.

Pitch Commander™ provides a process for planning and running users’ federation
execution. Locations and hosts are described together with any important applications such as
simulators, supporting databases, and visualization systems. The federation can then be described
and mapped to the corresponding hosts and applications. Pitch Commander™ also allows users
to auto-discover what hosts and federates are available.

Pitch Recorder™ (Real HLA 1516 Recording) provides the ability to record, analyze,
and play back information exchanged in an HLA federation.

Pitch Recorder™ combined with Fed Director™ provides early development of a
federate to verify stability and correct behavior of the federate. Early integration developers may
use the Pitch Recorder™ to record and exchange data between different sites for testing
purposes. Full integration data can be recorded and inspected to pinpoint problems such as
incorrect or missing data. Pitch Recorder™ can also be used to monitor the data production and
to capture data for later reuse for full-scale execution of federations. Pitch Recorder™ can also
be used to inspect recorded data and to play it back to export it to analysis software for after-
action analysis. Additional capabilities of Pitch Recorder™ are as follows:

• Capture and retain data after the simulation has been executed.

• Monitor in real time how data is produced when the simulation is executed.

• Inspect and visualize the simulation data.

• Exchange the simulation data into the federation.

• Exchange the simulation data between sites and organizations.

• Reuse and refine the simulation data in other applications such as statistical software,
spreadsheets, and the like.

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 57

Pitch Visual OMT™ provides the capability for creating and maintaining HLA 1516
Object models. HLA Object models are necessary to specify the data exchange between
simulation systems. Pitch Visual OMT™ allows the developer to develop, maintain, and quality-
assure these models. Pitch Visual OMT™ can be used by all federation developers during early
federation modeling phases as well as when federations are extended. Specifically, Pitch Visual
OMT™ provides graphical inspection and editing on standard workstations and provides wizards
for migrating from older standards. The graphical interface, as well as the HTML output, enables
collaboration and sharing of models.

MaK Data Logger™ is a system for capturing and replaying simulation data. The Data
Logger’s GUI enables users to record HLA or DIS messages to a file and replay them to review
and critique simulation exercises. And with DVR-like features, including pause, fast forward,
and slow motion (both forward and reverse), users can create more effective demonstrations and
analysis. Velocities and accelerations are scaled during non-real-time playback to facilitate a
smooth display in the MaK Stealth, MaK Plan View Display, or other visualization tools.

MaK Data Logger™ provides the following capabilities:

• HLA and DIS Data Collection and Playback System

• Key component of the MaK After Action Review System

• Record and replay using any HLA FOM

• Interactive display of simulation timeline

• Slower or faster than real-time playback

• Point and range annotations

• HLA time management support

• Export of DIS or HLA data to SQL databases

• Toolkit API for customization

• Visual editing tools

• User-configurable filtering

• Packet histogram display

• Ability to convert recording logs to text

OMDT Pro provides the following features:

• Tree view navigation that allows users to locate information in their object models.

• Double-click any item in the tree or tab sheet views to access a property sheet with
detailed information users can either review or edit.

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 58

• Access the Object Model Template (OMT) tables with the tabbed sheets.

• Display warning and error messages in an output window to reduce the clutter on the
workspace.

• Drag and drop object model items from one model to another.

• Catch and correct HLA consistency errors at any point in the workflow.

FedDirector, part of the integrated HLA Lab Works product suite, is designed to take
advantage of Federation Object Model (FOM) and Management Object Model (MOM)
information to provide a comprehensive view of the federation execution. FedDirector reads the
FOM during run-time and allows users to declare interest in object classes. FedDirector provides
views for managing every federate’s declarations, objects, ownership, and time settings.
FedDirector provides the following:

• Dialog views for each HLA service group and MOM class

• Interface to MOM information

• Ability to generate and receive FOM interactions and to subscribe to any FOM
attribute

• Access to federation management services from a dialog window or a toolbar icon

• Use of both the MOM and the FOM to collect information to manage a federation

• Support of all HLA time management schemes

• Management of users’ federation from creation through resignation

5.4 TEST AND TRAINING ENABLING ARCHITECTURE (TENA) SUPPORT
TOOLS

This section briefly describes the TENA support tools (referred to as the “TENA Tools”)
that are available. Since TENA has but a single vendor source, the listing of TENA Tools can be
quite precise. TENA Tools are general-purpose, reusable applications that deal with a wide
variety of common tasks on ranges. They help the logical range developers and event planners
manage all aspects of planning, executing, managing, and analyzing a logical range execution,
and respond directly to one of TENA’s architectural goals, which is to easily manage a logical
range throughout the range event life cycle. The tool categories are event planning, event
managing/monitoring, communication management, event analysis, and gateway applications.
Each of these categories is discussed in the subsections below.

The content of the descriptions were directly or indirectly gleaned from the TENA Tools
Requirements Document [tena02].

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 59

5.4.1 Event Planning Tool Suite
Tools in the event planning tool suite assist the logical range developers in creating a

logical range. The suite includes tools for performing the following functions:

• Exercise objectives analysis—What are the objectives of a given event, and what
range resources exist that might match those objectives?

• Scenario Definition tools to help the user define the participants, instrumentation
systems, and the sequence of events in an exercise or test event.

• A set of tools to assist in all of the various plans (in particular, safety plans, test plans,
and data collection plans) necessary for any range event.

• A set of tools to assist the user in estimating the cost and maintaining the schedule for
a range event.

• The Information Architecture Analysis tool to allow the user to create and simulate a
system-level view of a logical range, including performance prediction and network
simulation. This tool allows the logical range designers to perform “what if …”
analyses on various logical range configurations.

• The Application Verifier tool to allow the user to test and verify the TENA-
compliance of a given application.

• The Application Configuration tool to allow a range operator to configure or
reconfigure a range resource application prior to execution.

• The Logical Range Check-Out tool to provide the capability to test a logical range (or
segments thereof) before execution time.

These tools are built using a common collaboration framework, which helps
geographically dispersed users work together to create the event in a collaborative fashion. In
that way, each tool in this suite works seamlessly with all other tools in the suite, as well as with
the Repository Browser and the Logical Range Object Model tools, which meets TENA’s
architectural goal for simple, efficient, rapid, logical range development.

5.4.2 Event Manager/Monitor
The event manager/monitor tools allow the monitoring and control of range resources

applications during a logical range execution. The Event Manager and the Event Monitor are
really the same tool, with the manager version empowered by security policy to alter and control
range resources (through their Application Management Objects), while the monitor version can
only passively display logical range information.

Both tools are capable of monitoring the health of range resource applications, and both
provide several visual representations of a logical range, including a map display and an

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 60

information architecture display. Both tools can display to an event conductor the raw values of
SDO publication state, Messages, or Data Streams. The Event Manager can restart an application
that has crashed, if necessary. Both the Event Manager and the Event Monitor may participate in
multiple logical ranges at the same time to achieve a range’s broader goals.

5.4.3 Communication Manager
The Communication Manager monitors the physical network and informs the user of any

problems that occur that might impact the logical range execution. It allows the range operators
to control network equipment and computers in the logical range using standard (e.g., SNMP)
protocols. It monitors network traffic and executes a performance prediction simulation to make
sure that the network is being used optimally. It interacts with the TENA middleware to schedule
network resources such as multicast groups or raw bandwidth as necessary to support the logical
range.

5.4.4 Event Analyzer Tool Suite
The Event Analyzer tool suite provides all of the analysis capabilities for a logical range.

In particular, tools in this suite provide:

• Real-time analysis of important aspects of the logical range, including its operating
conditions

• Post-event data reduction and statistical analysis on the collected data

• Comparative analysis based on predicted results

Real-time analysis is accomplished differently from post-event analysis. The logical
range developers must decide, based on their analysis needs and the logical range’s information
architecture, how real-time analysis should be done. For example, one way to perform real-time
analysis is for an analysis application to be an active participant in the logical range, subscribing
to all of the information it needs, storing this information locally in memory or on disk, then
performing whatever calculations are required to provide real-time or near-real-time analytic
functionality. Another way to perform real-time analysis is for an analysis application to query
the Logical Range Data Archive (LRDA) directly for whatever information it requires and not
directly participate in the logical range execution by subscribing to real-time information. Both
of these mechanisms have their advantages and disadvantages. The logical range developers
must decide when they do their logical range information architecture which mechanism is best
for their particular analysis needs. If the LRDA is distributed, it may not be able to respond in
real time to certain queries (those that require a distributed join). Indeed, real-time queries of the
LRDA might inadvertently consume a large amount of bandwidth on the network when such
bandwidth is required for other, more important, operational information. Any of these
“expensive” queries will therefore be disallowed by the LRDA during execution. On the other
hand, an analysis application that actively subscribes to all information in the execution might

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 61

also overwhelm network capacity. It is therefore imperative that the logical range developers
have a well-designed analysis plan that takes into account the capabilities of the underlying
network, the information requirements of the analysis applications, and the design of their LRDA
before execution.

There may be many types of analysis applications, performing many different functions.
These functions might include data mining, pattern recognition, visualization, and statistical
analysis.

5.4.5 TENA/Non-TENA Gateway Applications
Gateway applications allow the integration of TENA range resource applications with

non-TENA resources. Because TENA must interact with many types of non-TENA systems and
architectures, it is important that a generalized gateway design be described. Such a design is
presented in Figure 15, which shows the translation capabilities, based on pre-defined rules, that
allow objects in the Logical Range Object Model (LROM) to be translated into other protocols.

Figure 15. Generic TENA gateway design.

The essence of the design is quite simple. Gateways are applications that communicate
with both a TENA logical range (using the TENA middleware) and another set of applications
using some other protocol. The component labeled “Other Middleware” represents any of the
myriad libraries or software infrastructures that are used to communicate in these other
architectures. For HLA simulations, the “Other Middleware” represents the HLA RTI. For
legacy simulations that adhere to the DIS standard, the “Other Middleware” represents DIS
protocol libraries. For range instrumentation, tactical interfaces, or range control systems, the
“Other Middleware” might be a common class library, or subroutine library, or custom software
that allows an application to communicate in one of these communities.

Information from each of these non-TENA architectures is encoded in the gateway as a
software object, based on the particular format of the data being communicated. These objects

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 62

are the “Other Objects” in the figure. If the other architecture naturally produces software
objects, these will be used directly, but it is more likely that the other architectures produce data
records or PDUs. In this case, the gateway designers need to create a set of software classes that
model the information contained in the PDUs.

The translator is a specific piece of custom software that maps the information contained
in TENA SDOs, messages, and data streams into the “other objects” of the other protocol. This
translator consists of custom-built software; it is one of a number of reusable components or is
auto-code-generated based on some higher-level translation rules. Using this tool, one could
construct a system with a GUI that allowed the user to “draw” the translation rules from a palette
of functions and subsequently have the tool auto-generate the gateway software for the particular
LROM and other protocols.

The gateway application software also provides some sophisticated functionality for
intelligently subscribing to only that information needed by that particular gateway. In larger
systems, gateways might have to be federated with one another, working together to balance
processing or network load. Managing a series of federated gateways usually becomes a complex
task. In this case, using the Gateway Manager addresses handling these management functions.
Such a design is illustrated in Figure 16. The Gateway Manager communicates with and controls
the gateways using their built-in Application Management Objects. The gateways inform the
Gateway Manager of their load, latencies, and throughputs, and the Gateway Manager hosts the
algorithms that decide how to better balance the load or improve the system’s performance.
Figure 16 only illustrates two gateways working together, but in principle there is no limit to the
number of gateways that could be federated if necessary.

Figure 16. Federating gateways to balance resources using the Federated
Gateway Manager tool.

Range Protocol

Range
Application

Range
Application

Range
Application

Range
Application

TENA
Application

TENA
Application

TENA
Application

TENA Middleware
Communication

Coordination,
Control

Coordination,
Control

Gateway
Manager
Gateway
Manager

TENA-Range
Gateway

TENA-Range
Gateway

Range Protocol

Range
Application

Range
Application

Range
Application

Range
Application

TENA
Application

TENA
Application

TENA
Application

TENA Middleware
Communication

Coordination,
Control

Coordination,
Control

Gateway
Manager
Gateway
Manager

TENA-Range
Gateway

TENA-Range
Gateway

TENA-Range
Gateway

TENA-Range
Gateway

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 63

5.4.5.1 Integrating Ranges and Simulations: TENA and the HLA4

The DoD HLA for M&S has been designated the standard architecture for M&S
throughout the DoD. The HLA provides a common mechanism for interoperability and reuse of
simulations. It is based on the premise that no single simulation can satisfy all requirements at all
times. An individual simulation or set of simulations developed for one purpose can be applied to
another purpose under the concept of an HLA “federation” that calls for a composable set of
interacting simulations. The intent of the HLA is to provide the structure to support
interoperability and reuse of different simulations, ultimately reducing the cost and time required
to create a synthetic operating environment for a new purpose.

The HLA requires simulations to interact with other simulations via the RTI according to
its standard interface specification. The HLA does not specify the internal structure of
simulations; it just defines RTI services that allow simulations to form federations and exchange
information with one another. The HLA requires federations to use an object model describing
the information exchanged by the simulations across a given federation but does not specify what
that object model must be. The HLA Object Model Template (OMT) stipulates the kind of
information that should be included in an object model, but it does not define the object classes
(e.g., vehicles, unit types) that appear in the model. The OMT performs the same function in the
HLA as the TENA meta-model does in TENA.

5.4.5.2 HLA Gateway
The TENA-HLA gateway provides the capability for a TENA simulation to be

interoperable with other architectures. Since the range community adopted the TENA
middleware as the standard high-performance communication system for distributing the TENA
Object Model, a mechanism was needed to bridge between the TENA middleware and the HLA
RTI so that TENA Range Resources could interoperate with HLA simulations. The bridging
itself was accomplished as illustrated in Figure 17.

Figure 17. The TENA-HLA gateway.

4Parts of this section have been paraphrased from the FI 2010 JORD, pp. 43 and 44.

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 64

There are two issues that the gateway resolved to address semantic interoperability
between HLA federations and TENA logical ranges. These issues were as follows:

• Different Meta-models—The HLA meta-model is quite a bit more restrictive than the
TENA meta-model, which presents a number of problems for a TENA-HLA gateway
designer. First, translating the more complex TENA LROM class definitions into the
simpler HLA classes will be difficult because not all features in the TENA meta-
model can be represented properly as HLA objects. Since the HLA OMT does not
support composition, translating complex TENA composition hierarchies into a
sensible HLA FOM will be difficult. Brute force approaches that “flatten out” the
containment hierarchy on the HLA side have been prototyped. Second, the HLA OMT
is oriented around items called “attributes” organized into collections called “classes.”
The natural tendency to equate HLA “classes” with TENA SDO class definitions must
be avoided, as these two constructs behave very differently during run-time.

• Time Management—The HLA provides services to manage the ordering of events in
a distributed simulation. For historical reasons, this ability to globally order events is
called “time management,” since the key to the global order is the simulation time.
Time-managed HLA federations guarantee that each simulation receives events,
including messages from other simulations, in proper order. TENA, which runs in real
time, does not guarantee the global ordering of events. Each application in a TENA
logical range receives SDO updates and messages as they come in, to minimize
latency and maximize execution efficiency. It is possible, therefore, for TENA
applications to receive events out of order. Integrating simulations using HLA time
management with range assets running in real time is a major technical challenge, one
for which additional prototyping and research will be required.

5.4.5.3 Other Gateways
Two other categories of gateways are important:

• C4ISR System Gateways—C4ISR systems are a special class of systems that are
designed to bring information superiority to the warfighter. C4ISR systems are just
beginning to be built to a set of common architectures. There are many C4ISR systems
being used today that need to be integrated into logical ranges, e.g., Global Command
and Control System (GCCS), Cooperative Engagement Capability (CEC), and
Advanced Field Artillery Data System (AFATDS). Like existing range
instrumentation systems, many of these C4ISR systems use message-based
communication mechanisms, with insufficient standardization of message types and
contents to provide anything more than syntactic interoperability.

• Gateways to Entities on the Range—The term “entity” refers to systems (such as
ships, vehicles, aircraft, etc.) that are on the range for testing or training purposes.

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 65

They may be a system-under-test or they may be equipment used by the training
audience. To the extent that these systems use C4ISR equipment, communication
between them and a TENA logical range would occur via one of the many C4ISR
gateways. But in most cases separate gateways to tactical interfaces such as JTIDS,
Link-16, TADIL-J, Link-11, etc., will be necessary. As with C4ISR systems and
simulations, interoperability between TENA and range entities will be at the syntactic
level until all of the issues related to translating their protocols are well understood
and have been tested thoroughly.

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 66

6 SUMMARY

The LVCAR-CT has established an independent view of the current architectures. The
next step is to determine what actions lead to convergence. The vision is that in 2015 new
versions of CTIA, DIS, HLA, and TENA will come out that will incorporate the results of the
Convergence Initiative. These new versions will continue to provide their users with services that
maintain the value of previous investments in LVC software applications. However, as a result of
collaboration between architecture engineering teams and limited additional changes, the new
versions can much more easily and effectively be bridged.

The LVCAR-CT work does not stand alone. In particular, many preconditions, which are
being pursued as part of related tasks, are necessary to achieve this vision. The LVCAR-CT
assumes the following efforts will be successfully accomplished on schedule, and actively
collaborates with the teams involved to encourage such success:

1. DSEEP defines common processes for distributed simulation development, widely
disseminates them, and enables work on process overlays for multi-architecture events.

2. The Joint Common Object Model (JCOM) produces an architecture-independent data-
exchange model representation compatible with all architectures.

3. The LVC Common Capabilities activity defines a reuse solution (registry, repository,
etc.) compatible with all the architectures.

4. The LVC Bridges and Gateways activity identifies mechanisms to convert between the
legacy versions of the architectures.

5. Management can effectively incentivize action by any of the architecture proponents.

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 67

APPENDIX A. ABBREVIATONS AND ACRONYMS

2D two-dimensional
3D three-dimensional
AAC Alarms and Alerts Component
AAR after action review
ACMS Air Combat Mission System
ADRM Asset Database Resource Manager
AF Acquiring Federate
AFATDS Advanced Field Artillery Tactical Data System (U.S. Army)
AMT Architecture Management Team
API Application Programmer Interface
ARM Architecture Reference Model
ASTMP Army Science and Technology Master Plan
AWES Area Weapons Effects Simulation
BED battlefield effect device
C4ISR command, control, communications, computers, intelligence, surveillance,

and reconnaissance
CAS Close Air Support
CAST Close Air Support Mission Editor Tool
CCS Command and Control Suite
CDR Common Data Representation
CEC Cooperative Engagement Capability
CIC Combat Information Center
CORBA Common Object Request Broker Architecture
COTS commercial off-the-shelf
CPD Capability Production Document
CTC Combat Training Center
CTC-OIS Combat Training Center Objective Instrumentation System
CTIA Common Training Instrumentation Architecture
DCP Data Collection Plan
DDM Data Distribution Management
DDR&E Director, Defense Research and Engineering
DF Divesting Federate
DGPS digital GPS
DIS Distributed Interactive Simulation
DM Declaration Management
DoD United States Department of Defense
DRTS Digital Range Training Systems
DSEEP Distributed Simulation Engineering and Execution Process
DTM Digital Tactical Monitoring
ECEF Earth Centered Earth Fixed

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 68

EGP Event Generator Processor
EPG Entity Property Grid
ERC Exercise
ESPDU entity state PDU
EXCON Exercise Controller
FBCB2 Force Battle Command, Brigade-and-Below
FDD FOM Document Data
FEDEP Federation Development and Execution Process
FF Fire Finder
FLIR forward-looking infrared
FOM Federation Object Model; figure of merit
FQR Flush Queue Request (HLA)
FST Fire Support Tool
GALT Greatest Available Logical Time
GC Gateway Control
GCCS Global Command and Control System
GOTS government off-the-shelf
GPS Global Positioning System
GUI graphical user interface
HITS Homestation Instrumentation Training System
HLA High Level Architecture
ICTS Information and Communication Technology Services
IDL Interface Definition Language
IED improvised explosive device
IEEE Institute of Electrical & Electronics Engineers
IIR Instrumentation Issue and Recovery
IO Information Operations
IOS Instructor Operator Station
ISC Instrumentation Status and Control
JBUS Joint BUS
JCOM Joint Common Object Model
JLVCDT Joint Live Virtual Constructive Data Tool
JTRS Joint Tactical Radio System
JVMF Joint Variable Message Format
LAN local area network
LITS Least Incoming Time Stamp
LRDA Logical Range Data Archive
LROM Logical Range Object Model
LSF Lite Services Framework
LT2-FTS Live Training Transformation – Family of Training Systems
LVC live, virtual, and constructive

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 69

LVCAR Live-Virtual-Constructive Architecture Roadmap
LVCAR-CT LVCAR Convergence Team
MGRS Military Grid Reference System
Mini-SMECS Miniature Networked Spectrum Monitoring and Engineering Control

System
MOM Management Object Model
MOUT Military Operations in Urban Terrain
M&S Modeling and Simulation
M&S CO M&S Coordination Office
MUX Multiplexer
NMR Next Message Request (HLA)
NMRA Next Message Request Available (HLA)
OC observer/controller
OIS On-Line Information System
OMT Object Model Template
OneTESS On Tactical Engagement Simulation System
OO object-oriented
ORB Object Request Broker
ORD Operational Requirements Document
ORT Observation Recording Tool
OS Operating System
PDT Participant Definition Tool
PDU Protocol Data Unit
PEO STRI U.S. Army Program Executive Office for Simulation. Training, and

Instrumentation
PM TRADE Project Manager Training Devices
PnP plug and play
PU Player Unit
RCP Rolling Combat Power
RO Receive Order
ROC Range Operations Center
RMI Remote Method Invocation
RPR Real-time Platform Reference
RTI Run-Time Infrastructure
QoS quality of service
SA situational awareness
SDO Stateful Distributed Object
SEGW Security Gateway
SIMAN Simulation Management
SISO Simulation Interoperability Standards Organization
SME subject matter expert

Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model

Page 70

SNMP Simple Network Management Protocol
SOA service-oriented architecture
STM System Technical Monitoring
SysCon System Control (CTC)
SYSCON System Control
TAF Tactical Analysis and Feedback
TAR Time Advance Request (HLA)
TARA Time Advance Request Available (HLA)
TC tracking control
TCG Tactical Communications Group
TCO Tactical Control Officer
TCP/IP Transmission Control Protocol/Internet Protocol
TCR Transfer Control Request
TENA Test and Training Enabling Architecture
TEP Target Event Processor
TESS Tactical Engagement Simulation System
THP Take Home Package
TNS Tactical Net Selector
T-RECCS Training Range Exercise Command & Control Suite
TSO Time Stamped Order
UDP User Datagram Protocol
UDP/IP User Datagram Protocol/Internet Protocol
UTC Universal Target Controller
VSS Video System Suite
WAN wide area network
WSL Weather Station Lite
XML Extensible Markup Language

	1 EXECUTIVE SUMMARY
	2 REPORT DEVELOPMENT PROCESS
	2.1 REPORT FORMAT
	2.2 REFERENCED DOCUMENTS
	2.3 COMMON CONSTRUCTS

	3 ARCHITECTURAL OVERVIEWS
	3.1 COMMON TRAINING INSTRUMENTATION ARCHITECTURE (CTIA)
	3.2 DISTRIBUTED INTERACTIVE SIMULATION (DIS)
	3.3 HIGH LEVEL ARCHITECTURE (HLA)
	3.4 TEST AND TRAINING ENABLING ARCHITECTURE (TENA)

	4 ARCHITECTURE SERVICES
	4.1 COMMON TRAINING INSTRUMENTATION ARCHITECTURE (CTIA)
	4.2 DISTRIBUTED INTERACTIVE SIMULATION (DIS)
	4.2.1 Simulation Management
	4.2.2 Entity Management
	4.2.2.1 Aggregate State
	4.2.2.2 Transfer Ownership

	4.2.3 Other Services
	4.2.4 Comparison of DIS and HLA Operation

	4.3 HIGH LEVEL ARCHITECTURE (HLA)
	4.3.1 Federation Management
	4.3.2 Declaration Management (DM)
	4.3.3 Object Management
	4.3.4 Ownership Management
	4.3.5 Time Management
	4.3.6 Data Distribution Management (DDM)

	4.4 TEST AND TRAINING ENABLING ARCHITECTURE (TENA)

	5 SUPPORT TOOLS
	5.1 COMMON TRAINING INSTRUMENTATION ARCHITECTURE (CTIA) SUPPORT TOOLS
	5.1.1 Planning
	5.1.1.1 Battle Roster
	5.1.1.2 Combat Training Center (CTC) Data Collection Plan Toolset
	5.1.1.3 DCP Editor
	5.1.1.4 Embedded Battle Roster
	5.1.1.5 Force Structure
	5.1.1.6 Instrumentation Scan
	5.1.1.7 Range Data Editor
	5.1.1.8 Range Tracking Admin Tool
	5.1.1.9 Roles and Permissions

	5.1.2 System Control (SYSCON)
	5.1.2.1 2D Map
	5.1.2.2 3D Viewer
	5.1.2.3 Asset Database Resource Manager (ADRM)
	5.1.2.4 Combat Training Center System Control (SysCon)
	5.1.2.5 CTIA Explorer
	5.1.2.6 Digital Tactical Monitoring
	5.1.2.7 Event Generator
	5.1.2.8 GPS Support
	5.1.2.9 Instrumentation Status and Control (ISC)
	5.1.2.10 Pairing Processor
	5.1.2.11 System Control (SYSCON)
	5.1.2.12 System Technical Monitoring (STM)
	5.1.2.13 Tracker Monitor

	5.1.3 Exercise Control (EXCON)
	5.1.3.1 Ad Hoc Query Tool
	5.1.3.2 Alarms and Alerts
	5.1.3.3 Close Air Support (CAS) Mission Editor
	5.1.3.4 CTC Reports
	5.1.3.5 Derived Tracking Processor
	5.1.3.6 Entity Commander
	5.1.3.7 Entity Property Grid (EPG)
	5.1.3.8 The Exercise Controller
	5.1.3.9 Exercise Assistant
	5.1.3.10 Exercise Manager
	5.1.3.11 Exercise Tree
	5.1.3.12 Inbox
	5.1.3.13 Participant Definition
	5.1.3.14 Playback
	5.1.3.15 Player Cache
	5.1.3.16 Player Status
	5.1.3.17 Preferences Editor
	5.1.3.18 Replay
	5.1.3.19 Rolling Combat Power (RCP)
	5.1.3.20 Scenario Controller
	5.1.3.21 Tactical Net Selector (TNS)
	5.1.3.22 T-RECCS

	5.1.4 Data Collection
	5.1.4.1 Bookmark Tool
	5.1.4.2 CIC Processor
	5.1.4.3 Common Player Unit Controller
	5.1.4.4 Contact Report
	5.1.4.5 Event Log
	5.1.4.6 GPS Processor
	5.1.4.7 Instrumentation Issue and Recovery (IIR)
	5.1.4.8 Observation Lite
	5.1.4.9 Observation Recording Tool (ORT)
	5.1.4.10 Obstacle Report
	5.1.4.11 Player Unit Check Out Tool
	5.1.4.12 Target Event Processor (TEP)
	5.1.4.13 Weather Station Lite (WSL)

	5.1.5 Battlefield Realism
	5.1.5.1 Area Weapons Effects Simulation (AWES)
	5.1.5.2 Command and Control Suite (CCS) to CTIA Gateway (NTC-specific local system)
	5.1.5.3 Common Player Unit Gateway
	5.1.5.4 Common Player Unit GC Message Service
	5.1.5.5 Common Player Unit JTRS Gateway
	5.1.5.6 Common Player Unit Multiplexer (MUX)
	5.1.5.7 CTIA JLVCDT Adapter
	5.1.5.8 DIS to CTIA Gateway
	5.1.5.9 DIS to XML Gateway
	5.1.5.10 Fire Finder Radar
	5.1.5.11 Fire Support Tool
	5.1.5.12 Fire Support Tool Lite
	5.1.5.13 Gateway Entity Filter GUI
	5.1.5.14 XML to CTIA Gateway

	5.1.6 Tactical Analysis and Feedback (TAF)
	5.1.6.1 After Action Review (AAR)
	5.1.6.2 Battle Damage Assessment
	5.1.6.3 CTC Queries
	5.1.6.4 Field Camera Controller
	5.1.6.5 Miniature Networked Spectrum Monitoring and Engineering Control System
	5.1.6.6 Report Generator Tool
	5.1.6.7 Vehicle Video Control
	5.1.6.8 Video System Suite

	5.1.7 Infrastructure Tools
	5.1.7.1 CTC COTS Support
	5.1.7.2 Data Access Layer
	5.1.7.3 DRTS Parametric Database
	5.1.7.4 Entity Type Editor
	5.1.7.5 Exercise Builder
	5.1.7.6 FBCB2
	5.1.7.7 JBUS Adapter
	5.1.7.8 Lite Services Framework
	5.1.7.9 LT2 GUI Framework

	5.2 DISTRIBUTED INTERACTIVE SIMULATION (DIS) SUPPORT TOOLS
	5.2.1 Middleware
	5.2.2 Gateway
	5.2.3 Visualization
	5.2.4 Simulation Manager
	5.2.5 Logger/Playback
	5.2.6 Analyzer
	5.2.7 Test Generators
	5.2.8 After Action Review (AAR)
	5.2.9 Software Development Tools

	5.3 HIGH LEVEL ARCHITECTURE (HLA) SUPPORT TOOLS
	5.4 TEST AND TRAINING ENABLING ARCHITECTURE (TENA) SUPPORT TOOLS
	5.4.1 Event Planning Tool Suite
	5.4.2 Event Manager/Monitor
	5.4.3 Communication Manager
	5.4.4 Event Analyzer Tool Suite
	5.4.5 TENA/Non-TENA Gateway Applications
	5.4.5.1 Integrating Ranges and Simulations: TENA and the HLA
	5.4.5.2 HLA Gateway
	5.4.5.3 Other Gateways

	6 SUMMARY

