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1 EXECUTIVE SUMMARY 

The Live-Virtual-Constructive (LVC) Architecture Roadmap (LVCAR) Study developed 
a vision for achieving significant interoperability improvements in LVC simulation 
environments. The study recommended activities proposed to lower the time and cost required to 
integrate mixed architecture events by building better bridges between the legacy architectures 
and making the architectures more compatible. An LVCAR Convergence Team (LVCAR-CT) 
has explored converging the current architectures. The recommended approach evolves each 
architecture to meet the needs of users while favoring common techniques and solutions. Rather 
than make the current High Level Architecture (HLA) like the current Test and Training 
Enabling Architecture (TENA), the goal is to make future HLAs more like future TENAs. 
Subject matter experts (SMEs) from each architecture participated together on the LVCAR-CT. 
Each SME provided existing documentation resources and identified where in the documents to 
extract the key services and tools. The LVCAR-CT met to discuss these artifacts and agree on a 
framework of common constructs through which to view them. Before identifying the changes 
needed to encourage this evolutionary convergence, the LVCAR-CT needs a common 
understanding of the services and tools needed to meet the needs of users. This report documents 
that understanding. 

While the architectures do not do the same thing, their conceptual foundations are based 
on common ideas. The architectures serve to connect specialized software programs together, 
providing some insulation between the programs to loosen their coupling. Common goals 
include facilitating LVC software application reuse, increasing software portability, fostering 
network topology independence, and off-loading common functionality. The reuse goal for each 
architecture is in the selection of software applications that represent the real players (in a live 
context) or the simulation (in a virtual or constructive context). These applications may be 
directly connected to military systems, particularly command and control systems, using military 
system interfaces. Individual architectures tailor these common constructs in several ways. They 
expand the scope of architectural definitions, mandating tool or scenario solutions, for example. 
The tradeoff between user needs for broad design freedom and interoperability is reflected in this 
tailoring. Providing broad design freedom requires that LVC software application designers 
make potentially non-interoperable choices. The other tailoring technique is the insertion of 
intermediate layers between the LVC software applications and the infrastructure and support 
services. The intermediate layers abstract the provided services to allow more generic 
implementations of the software applications. The architecture provides means to implement 
these intermediate layers, either directly or by standard interfaces, to save users effort while 
providing acceptable interoperability. 

A common theme with each of the architectures is the addition, either by an architecture 
distributor, by an architecture vendor, by third parties, or developed by end users, of services and 
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support tools. Section 4 describes the services provided by the architectures presented in the 
previous section. Some of the architectures have little explicit notion of a service (i.e., DIS) but 
service analogs are discussed. Section 5 presents an overview of the support tools available for 
each of the four architectures we examined. 

The LVCAR-CT has established an independent view of the current architectures. The 
next step is to determine what actions lead to convergence. The vision is that in 2015, new 
versions of Common Training Instrumentation Architecture (CTIA), Distributed Interactive 
Simulation (DIS), HLA, and TENA will come out that incorporate the results of the 
Convergence Initiative. The LVCAR-CT work does not stand alone. In particular, many 
preconditions, which are being pursued as part of related tasks, are necessary to achieve this 
vision. 
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2 REPORT DEVELOPMENT PROCESS  

The purpose of the Live-Virtual-Constructive (LVC) Architecture Roadmap (LVCAR) 
Study was to develop a vision and a supporting strategy for achieving significant interoperability 
improvements in LVC simulation environments. The study observed that the architectures 
available today solve most of the problems of most of their users and they are being improved to 
better serve their constituency. These architectures have continued to evolve and mature based 
on changing user requirements. Multiple architectures allow users to select the architecture that 
best meets their needs and, thus, provide an incentive for architecture developers and maintainers 
to competitively keep pace with technology and stay closely engaged with emerging user 
requirements, including requirements for better connections between architectures (Figure 1). 

 

Figure 1. LVC simulations interact with real command and control to provide a 
rich environment for engineering, training, and testing. (figure credit JFCOM) 

The LVCAR Study examined several courses of action before making its 
recommendations. The recommended activities propose to lower the time and cost required to 
integrate mixed architecture events by building better bridges between the legacy architectures 
and making the architectures more compatible. An LVCAR Convergence Team (LVCAR-CT) 
was chartered to explore the problem of converging the current architectures, including the 
production of this report. The convergence approach recommended to the LVCAR-CT evolves 
each architecture to meet the needs of users while favoring common techniques and solutions. 
Rather than make the current High Level Architecture (HLA) like the current Test and Training 
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Enabling Architecture (TENA), the goal is to make future HLAs more like future TENAs. 
Before identifying the changes needed to encourage this evolutionary convergence, the LVCAR-
CT needs to have a common understanding of the services and tools needed to meet the needs of 
users. This report documents that understanding. 

This report decomposes the existing architectures into services, detailed in Section 4, and 
supporting tools, detailed in Section 4. This Architecture Reference Model (ARM) provides the 
basis for future comparison of convergence alternatives at a level of resolution adequate to 
address the technical details. 

The production of this report has relied extensively on existing architecture 
documentation, for two reasons. First, the architecture development activities have produced 
large quantities of often very good documentation, and ignoring it would be a waste of resources. 
Second, and more significantly, the present documentation continues to grow as an integral part 
of the ongoing architectural evolution. This report provides a snapshot in time, and linkages to 
the ongoing architecture artifacts for future readers. 

Subject matter experts (SMEs) from each architecture participated together on the 
LVCAR-CT. Each SME provided existing documentation resources and identified where in the 
documents to extract the key services and tools. The LVCAR-CT met to discuss these artifacts 
and agree on a framework of common constructs through which to view them. The results have 
been extracted to form this report. 

2.1 REPORT FORMAT 
The report is constructed in four major parts: (a) the introduction and list of references; 

(b) overviews of each architecture; (c) details of the services in each architecture; and (d) details 
of the tools in each architecture. 

2.2 REFERENCED DOCUMENTS 
The following documents were the sources for the technical details in this report. 

 
[army01] Assistant Secretary of the Army (RDA), Army Science and Technology 

Master Plan (ASTMP). Volume I, Chapter VI, 1997. 
[ctia01] CTIA-ID-0128, CTIA DoD Architecture Framework Documentation 

Version 1.3. Orlando, Lockheed Martin Simulation, Training and Support, 
July 2008. 

[ctia02] CTIA project documentation, CTIA Layered Architecture View. Orlando, 
Lockheed Martin Simulation, Training and Support, February 2007. 

[ctia03] CTIA Team at PEO STRI, CTIA Live Training Product Line (LT2) 
Overview Briefing. PEO STRI, November 2006. 
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[ieee01] Simulation Interoperability Standards Committee, “Standard for Modeling 
and Simulation High Level Architecture - Framework and Rules,” IEEE 
Std IEEE1516-2000. HLA Working Group, December 11, 2000. 

[ieee02] Simulation Interoperability Standards Committee, “Standard for Modeling 
and Simulation High Level Architecture - Federate Interface 
Specification,” IEEE Std IEEE1516.1-2000. HLA Working Group, March 
9, 2001. 

[ieee03] Simulation Interoperability Standards Committee, “Standard for Modeling 
and Simulation High Level Architecture - Object Model Template 
Specification,” IEEE Std IEEE1516.2-2000. HLA Working Group, March 
9, 2001. 

[ieee04] IEEE FEDEP Working Group, “Federation Development and Execution 
Process (FEDEP),” IEEE Recommended Practice 1516.3-2000. R. R. 
Lutz, editor, April 2003. 

[ieee05] IEEE DSEEP Working Group, “Distributed Simulation Engineering and 
Execution Process (DSEEP),” IEEE Recommended Practice P1730. R. R. 
Lutz, editor, draft 2009. 

[kuhl01] Kuhl, Weatherly, and Dahmann, Creating Computer Simulation Systems: 
An Introduction to The High Level Architecture, Prentice Hall PTR, 
October 31, 1999. 

[rich01] Richbourg, R., and Lutz, R. R., Live Virtual Constructive Architecture 
Roadmap (LVCAR) Comparative Analysis of the Architectures. 
Alexandria: Institute for Defense Analyses, September 2008. 

[tena01] TENA Software Development Activity, TENA The Test and Training 
Enabling Architecture - Architecture Reference Document, Version 2005, 
February 2005. 

[tena02] Noyovitz, P., “TENA Tools Requirements Document,” Revision 1.17 
Final, December 9, 2003. 

2.3 COMMON CONSTRUCTS 
While the architectures do not do the same thing, their conceptual foundations are based 

on common ideas. The architectures serve to connect specialized software programs together, 
providing some insulation between the programs to loosen their coupling. Common goals 
include facilitating LVC software application reuse, increasing software portability, fostering 
network topology independence, and off-loading common functionality. 

Figure 2 shows the identified common constructs in general. Each architecture has a 
different boundary between what is defined by the architecture and its tools and what software or 
data is outside it. These common constructs have been aligned in this figure with the Distributed 
Simulation Engineering and Execution Process (DSEEP) [ieee05]. 
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Figure 2. Common constructs shared by all architectures. 

The reuse goal for each architecture is the selection of software applications that 
represent the real players (in a live context) or the simulation (in a virtual or constructive 
context). These applications may be directly connected to military systems, particularly 
command and control systems, using military system interfaces. The reuse applications, shown 
in Figure 2 as purple ovals, connect to the modeling and simulation (M&S) architecture’s 
infrastructure through services used to exchange data. The architecture might also define library 
functions that provide support services to these programs. In some applications, these programs 
may also interface with real (tactical or equivalent) military equipments. 

Support tools, shown in green, facilitate development, integration, execution, and results-
processing. Beyond the definitions of the architecture, shown in blue, a spectrum of external 
artifacts are available for use and reuse by developers, marked with the ☺.  

Individual architectures tailor these common constructs in several ways. They expand the 
scope of architectural definitions, shown in orange, mandating tool or scenario solutions, for 
example. The tradeoff between user needs for broad design freedom and interoperability is 
reflected in this tailoring. Providing broad design freedom may require that LVC software 
application designers make potentially non-interoperable choices. 

The other tailoring technique is the insertion of intermediate layers between the LVC 
software applications and the infrastructure and support services. The intermediate layers 
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abstract the provided services to allow more generic implementations of the software 
applications. The architecture provides means to implement these intermediate layers, either 
directly or by standard interfaces, to save users effort while providing acceptable interoperability. 

Figure 2 lacks an exhaustive treatment of all the data and tool concepts considered by 
architecture designers. Rather, the purpose of this figure is to compare and contrast the 
architectures in light of common constructs they share. 
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3 ARCHITECTURAL OVERVIEWS 

Each of the following sections examines one of the existing architectures, in its own 
terms and in terms of the common constructs. The LVCAR study produced a top-level 
comparison of these architectures, which has guided this development [rich01]. 

This section presents an overview of the following architectures: Common Training 
Instrumentation Architecture (CTIA), Distributed Interactive Simulation (DIS), High Level 
Architecture (HLA), and Test and Training Enabling Architecture (TENA). Characteristics of 
these architectures are as follows: 

1. CTIA: CTIA has a primary user base that is interested in instrumented live training, with 
secondary support to the constructive simulation community as the simulations are 
required to augment live training. This architecture uses a service-oriented paradigm and 
is unique in that respect. It provides a subset level of service even in the face of unreliable 
communication networks. CTIA provides a fixed but extensible data exchange service. 
The U.S. Army Program Executive Office for Simulation, Training, and Instrumentation 
(PEO STRI) controls the CTIA versioning and releases. CTIA is not currently an 
international standard, and there are no plans to obtain standardization beyond PEO 
STRI. The requirements to handle unreliable wireless data links drove CTIA in its own 
architectural directions. CTIA does not compete with any of the existing architectures 
(i.e., DIS, HLA, and TENA). Its scope is focused on supporting product line development 
associated with Project Manager Training Devices’ (PM TRADE’s) LT2-FTS (Live 
Training Transformation – Family of Training Systems) programs responsible for 
deploying ground maneuver live training systems to combat training centers, trainees at 
their home stations, and deployed locations. and supporting all of the training capabilities 
derived from the approved LT2-FTS Operational Requirements Documents (ORDs), 
Initial Capabilities Documents, and Capability Production Documents (CPDs). 

2. DIS: DIS primarily serves the virtual and real-time constructive simulation community 
with a secondary use in the live community. DIS has no central server; instead it uses a 
multicast/broadcast peer-to-peer paradigm in its message passing. DIS is an international 
standard and is managed and controlled by the Simulation Interoperability Standards 
Organization (SISO). DIS has a fixed but extensible data exchange model. There is no 
standard verification suite for DIS, although verification tools have been developed by 
various user organizations. This protocol has proven to be simple to learn and easy to use, 
yet it provides a rich set of rules for semantic interoperability over a wide range of 
simulation fidelity. While DIS does not provide as many services as other architectures, it 
imposes a very low overhead. Where simulation events do not require using more 
advanced architectural services (such as time management, federation management, and 
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so on), DIS offers a very economical solution to the simulation intercommunication 
problem. 

3. HLA: HLA serves primarily the constructive and virtual simulation user communities, 
and secondarily supports the live simulation community. It uses a peer-to-peer message-
passing paradigm. It is an international standard. The features are managed by SISO. 
There is a formal middleware verification process managed by DoD’s M&S Coordination 
Office (M&S CO). HLA uses a user-defined data exchange model. This architecture can 
serve a disparate collection of simulation systems, including those that require advanced 
architectural services and those that have modest requirements. In addition to its large 
U.S. user base, its standing as an international standard has resulted in a large level of use 
in the coalition partner countries, facilitating combined simulation events that include 
multiple nations. 

4. TENA: TENA serves the live training and testing user community. It uses a peer-to-peer 
message-passing paradigm. It is not an international standard but it is managed and 
controlled by the Architecture Management Team (AMT). It uses a user-defined data 
exchange model. Offering much of the same capability as HLA, but based on more 
modern object-oriented (OO) technology, TENA supports OO programming for new 
software application development. The TENA middleware is offered to government users 
as government off-the-shelf (GOTS) software, unlike the HLA middleware that is a 
commercial off-the-shelf (COTS) software with various vendor fee structures.  

These architectures are available today, and all of the existing architectures are being 
improved to better serve their communities of use. The various distributed simulation 
architectures in use within the DoD have all been designed to meet the needs of one or more user 
communities. These architectures have continued to evolve and mature based on changing user 
requirements. The existence of multiple architectures allows users to select the architecture that 
best meets their individual needs. 

Since 2001, work has been ongoing to develop common engineering practices for 
simulation development. This work produced the IEEE standardized Federation Development 
and Execution Process (FEDEP) [ieee04] and its successor DSEEP [ieee05]. Some architectures 
have explicitly included this engineering process in their development process, and the goal of 
the DSEEP developers is to extend coverage to all architectures. Another effort within the 
LVCAR implementation is the development of an architecture-independent systems engineering 
process. 

3.1 COMMON TRAINING INSTRUMENTATION ARCHITECTURE (CTIA) 
CTIA provides a common training architecture for the Army’s LT2 Product Line. The 

CTIA architecture enables distributed training by linking LVC assets with visualization, data 
collection, and after action review (AAR) capability on a training range. Its functionality centers 
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on the receipt, correlation, and processing of data related to the live ground maneuver domain 
(i.e., collects and processes live training data to meet exercise objectives). It is designed to access 
a very large number of assets to collect data over relatively unreliable wireless data links. It 
supports rapid training system development and fielding based on “plug & play” components 
and provides logically centralized services with persistent data. The scalability of the system to 
support squad through brigade echelon live training warfighters hinges on data processing and 
computation (e.g., the interaction of databases, workstations, players/entity state). Figure 3 
reflects the overall CTIA system design [ctia01]. 

 

Figure 3. Overall CTIA system concept. 

With a requirement to provide a persistent, common database of all objects that are 
reused by the LT2-FTS programs, CTIA is required to support persistence of component 
identities across restarts. Thus, all information is continually recorded in an SQL-type database 
to support exercise execution and anytime, anywhere Army live training AARs. This 
requirement is different from that imposed on a traditional data logger, which records 
interactions sent across the simulation network. CTIA is the only architecture that supports such 
a requirement (although TENA has a requirement to “support the local collection of data to a 
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persistent store” that has not been implemented). It is this tight coupling to a persistent database 
that makes CTIA an installation-specific system that is not competitive with any of the existing 
architectures (i.e., DIS, HLA, and TENA). Further, CTIA has the requirement to support 
communication over a wireless network. This has two impacts on the development of the CTIA 
architecture. First, it must carefully manage bandwidth over wireless links. This was 
accomplished by using centralized services to better manage the communication bandwidth 
between the wireless nodes. Second, it needs to make provisions in the architecture for unreliable 
wireless data links. CTIA does provide gateways to non-CTIA-compliant protocols (such as DIS, 
TENA, and HLA), and the middleware is based on an open-standard version of the Common 
Object Request Broker Architecture (CORBA) that it uses without customizations. Thus, CTIA-
based applications may use any adequate Object Request Broker (ORB) the way any CORBA 
application would, and as a result, CTIA-compliant components may be developed without using 
any CTIA-developed code. 

CTIA uses the service-oriented architecture (SOA) paradigm and is unique in that 
respect, as most other distributed simulation architectures (i.e., DIS, HLA, and TENA) are 
designed to use peer-to-peer network architectures rather than client-server architectures. The 
provision of reliable transport and other advanced quality of service (QoS) mechanisms when 
required by user applications will likely be a requirement for all architectures in the future. 
Figure 4 shows how the pieces fit together [ctia02]. 

 

Figure 4. CTIA layered architecture. 



Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model 
 

 

 
 

Page 12 
 

CTIA evolution/maintenance belongs with the architecture organization for the 
development of a specific set of Army Live Ground Maneuver training products that is 
configuration managed as a product line family by PEO STRI/PM TRADE organization. Several 
versions of the middleware have been developed by the architecture organization and are being 
maintained via the PM TRADE LT2 Portal (https://www.lt2portal.org/). The portal also includes 
documentation regarding the development of middleware by other producers, development of 
common tools, and integration of products using the collection of common assets. All CTIA/LT2 
components are available to be reused by all consumers belonging to the PM TRADE LT2-FTS 
programs or other government agencies approved by PM TRADE.  

The majority of LT2 components, including the CTIA middleware components, are 
available as both executables and source code with unlimited government rights available to their 
LT2-FTS consumers. The goal of the LT2-FTS product line is to maximize reuse of code across 
the LT2 family of training products and provide common interoperability solutions for LT2-FTS 
with external training systems used on Army ranges or with other Joint ranges. The LT2-FTS 
requirements used to develop the architecture and middleware development were derived from 
multiple PM TRADE program Operational Requirements Documents (e.g., Combat Training 
Center Objective Instrumentation System [CTC-OIS], Homestation Instrumentation Training 
System [HITS], Instrumented Ranges, Military Operations in Urban Terrain [MOUT], One 
Tactical Engagement Simulation System [OneTESS], etc.). 

Figure 5 shows the CTIA interpretation of the common constructs. The defined bounds of 
the LT2 Program encourage the CTIA architecture to define many constructs that in more 
generic architectures are left as design freedom for developers. Simulations or Player 
Applications include a layer of adapter middleware that is provided by the CTIA development 
team. The central infrastructure includes an explicit CORBA component, and services can be 
aware of the CORBA technical components. Execution data has a supporting role, like other 
architectures, but it has a long-term persistence in order to support warfighter performance 
assessment and AAR that is unique, as described above. In addition to typical software libraries, 
the CTIA program defines a significant part of the development environment and provides 
documentation and a help desk to directly support developers. A dedicated data exchange model, 
specific to the persistent data store, is defined by the CTIA program for all users and 
applications. Reuse tools, in the form of a specific LT2 reuse library, provide significant 
additional capability to CTIA developers, including support for classified artifacts. 

In summary, the CTIA requirements to handle unreliable wireless data links drove CTIA 
in its own architectural directions, and, as an installation-specific system, CTIA does not 
compete with any of the existing architectures (i.e., DIS, HLA, and TENA). Its scope is focused 
on supporting product line development associated with PM TRADE’s LT2-FTS programs 
responsible for deploying ground maneuver live training systems to combat training centers, 
trainees at their home stations, and deployed locations; reducing total ownership and life-cycle 
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costs for all PM TRADE LT2-FTS programs; and supporting all of the training capabilities 
derived from the approved LT2-FTS ORDs, ICDs, and CPDs. The single-program approach 
taken on CTIA is narrower, in terms of the scope of uses supported, but much deeper, in terms of 
the level of reuse and compatibility expected. 

 

 
Figure 5. CTIA interpretations of the common constructs. 

3.2 DISTRIBUTED INTERACTIVE SIMULATION (DIS) 
Distributed Interactive Simulation (DIS) was born out of the DARPA SIMNET program 

of the mid-eighties. The DIS standard is documented in the IEEE 1278 series of standards. DIS is 
optimized for real-time platform-level simulations. These applications are generally able to 
compensate for many kinds of communications problems (latency, limited bandwidth, etc.). 
Thus, DIS applications manage their representation of time but do not have time management in 
the form used in many discrete event constructive simulations. Time in DIS is real time, as 
defined by the International Time Bureau. Likewise, DIS applications must tolerate occasional 
dropped packets because DIS uses best-effort delivery of messages through use of the User 
Datagram Protocol (UDP). The simplicity inherent in the requirements of DIS applications 
allows it to work with very low overhead. Thus, the DIS protocol has a comparatively low 
barrier to entry and it is relatively simple to learn and easy to use. 
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Figure 6. DIS used by Joint Precision Strike demonstration. 

The DIS data architecture specifies an on-the-wire protocol that strictly enforces data 
structure/encoding rules. Because DIS focuses on one simulation domain, and the allowable 
content for data exchange is published in the IEEE Standard, the semantics of the data in DIS 
messages has been clearly specified with detailed rules of use. Users of other architectures (e.g., 
HLA Real-time Platform Reference [RPR] Federation Object Model [FOM)] refer to the DIS 
standard for the semantic rules. DIS has recently developed a major revision, making a minimum 
of changes to the Protocol Data Unit (PDU) content/structure. In addition, DIS is locally 
extensible through the use of the experimental PDUs, and recent efforts have provided further 
extensibility while maintaining backwards compatibility. As an example, Figure 6 shows a 
diverse DIS network that was deployed by the Joint Precision Strike Demonstration program 
using point-to-point T1 telephone lines. 
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Figure 7. DIS interpretations of the common constructs. 

Figure 7 shows how the DIS community has approached the common constructs. 
Simulations or Player Applications include a layer of adapter middleware that extracts data from 
the simulator’s internal representation. Many DIS uses involve simulations “converted” from 
stand-alone operation to work on a DIS network. In addition, several middleware products are 
available for DIS to assist in the production and processing of PDUs. The DIS conceptual model 
and format for data exchange are explicitly defined in the IEEE Standard and taken as permanent 
by many DIS users. DIS also provides an extensive enumeration of the “entities” represented and 
many of their component systems. This database of identifying tuples is used as a reference even 
outside the DIS community. Several companies sell DIS software libraries, some of which 
integrate the company’s simulation hardware into the DIS network. The role of these products is 
not defined or mandated in DIS, but the long-term stability of DIS has made their product 
possible. 

In summary, DIS serves its user base well, particularly the real-time platform community. 
This is evidenced by the fact that so many organizations continue to use DIS. Costs are low and 
are seen as part of development. Those who use DIS have taken “ownership” of it. Costs for 
maintenance and evolution are seen as the cost of doing business. However, there is no one from 
the DoD enterprise perspective at the vanguard of DIS development. DIS has taken a consensus-
based engineering approach, which has produced a durable solution for DIS users. 
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3.3 HIGH LEVEL ARCHITECTURE (HLA) 
The HLA was developed to be a single architecture that could meet the needs of a broad 

potential set of LVC environment users. Under the leadership of the Director, Defense Research 
and Engineering (DDR&E), it was predetermined that HLA would support all DoD simulation 
application areas, those served by DIS and those DIS did not serve. Its charter was to unify 
simulation across the DoD. Thus, HLA was really the first distributed M&S interoperability 
paradigm intended from the ground up to support the collective requirements of the LVC 
communities. To accomplish this, HLA was designed as an architecture with a broad range of 
services not coupled to the information content of a specific LVC federation, thus providing the 
flexibility to serve a broadened base of M&S users and a set of exercise requirements. Where the 
DIS community had defined a single data exchange model solution, HLA designers engineered a 
broad spectrum of solutions to address additional requirements from communities such as 
Acquisition and Analysis that had not been able to accept the single DIS conceptual model 
[kuhl01]. 

 

Figure 8. HLA defines a standardized interface between the infrastructure and applications. 

As a general-purpose simulation interoperability architecture, HLA can serve a disparate 
collection of simulation systems, including those that require advanced architectural services, as 
well as those that have modest requirements as illustrated in Figure 8. While able to 
accommodate many different use cases, this one-size-fits-all approach required HLA to 
incorporate many services that are superfluous to some use cases. For example, motivated by the 
requirements of constructive federations, HLA has a requirement, and a solution, to support non-
real-time applications that require strict causal ordering of events and time synchronization 
mechanisms. To support this solution, HLA is required to support reliable transport and other 
higher overhead communications mechanisms. Particularly in the early days of HLA, the 
overhead required to support all of these different requirements was viewed as an impediment to 
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run-time performance and it paved the path for a number of use case-optimized middleware 
implementations (i.e., the Run-Time Infrastructure, or RTI). 

The design choices made by HLA attempted to improve on perceived shortcomings of 
existing architectures while serving the entire DoD M&S community. The static nature of DIS 
PDUs caused some representation problems; as the real world is always changing, HLA adopted 
a flexible object model capable of modeling changing data without having to change 
infrastructure. The HLA template approach allowing the users to define their data exchange 
based on specific requirements provided improved object model extensibility. While this 
increased flexibility to the user, it also allowed users to independently develop a plethora of 
object models that were rarely interoperable. In recognition of the problem associated with 
specifying a new object model for each new application, users were encouraged by the SISO 
Reference Federation Object Model study team to define community-standard object models 
outside of the architecture. The Real-time Platform Reference (RPR) Federation Object Model 
(FOM) is one example that improves syntactic interoperability. However, it does not go very 
deeply into the semantic level. 

HLA adopted an Application Programming Interface (API) Standard as opposed to an on-
the-wire standard that allowed it to more rapidly adopt technological advancements in how data 
is transmitted. This approach provided commercial RTI developers with the freedom to innovate 
and optimize their implementations, but the resulting RTIs were non-interoperable. 

In today’s HLA community, the acquisition of HLA middleware is nearly completely 
decentralized. Proponents are required to adopt a specific RTI implementation, often buying a 
middleware license from one of the many middleware providers. The existence of middleware 
license fees, particularly multiple middleware license fees at the federation level, has been a 
target of criticism. However, the existence of multiple competing middleware vendors promotes 
innovation for market differentiation, controls costs by market forces, and scales with demand. 

HLA-compliant RTI middleware is subjected to an extensive test suite to verify API and 
service functionality testing against the HLA Interface Specification. Essentially, certification 
means that the RTI developer has accurately and successfully implemented all of the defined 
HLA services. The M&S CO currently provides RTI verification testing. 
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Figure 9. HLA interpretations of the common constructs. 

Figure 9 shows how the HLA community has approached the common constructs. 
Simulations or Player Applications may include a layer of adapter middleware that extracts data 
from the simulator’s internal representation. Many HLA uses involve simulations “converted” 
from DIS or stand-alone operation to use HLA. Some middleware products are available for both 
DIS and HLA to further blur this distinction. The HLA RTI provides an IEEE Standard defined 
API to the HLA services. Several companies sell HLA RTIs, and the role of these products is 
explicitly defined in the HLA Standards. 

HLA has taken a more indirect engineering approach, where users have to specify more 
of the conceptual model and data exchange model than in other architectures. The DoD-wide 
applicability of HLA in all M&S application areas does not support the level of standardization 
found in DIS or CTIA. 

3.4 TEST AND TRAINING ENABLING ARCHITECTURE (TENA) 
Offering much of the same capability as HLA, but based on more modern OO 

technology, TENA exploits OO programming in its implementation (e.g., polymorphism, local 
methods, Remote Method Invocation [RMI], etc.). The architecture was originally designed to 
link the test facilities at various range locations and, where applicable, link the test ranges to 
high-performance computational assets. The communication between ranges in TENA involves 
passing test information, potentially a large set of data, the nature of which can change with each 
new test. 
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Figure 10. TENA overview diagram illustrating the categories of software. 

TENA recognizes five basic categories of software as illustrated in Figure 10: 

• TENA Applications (Range Resource Applications and TENA Tools) (shown in 
green)—Range Resource Applications are range instrumentation or processing 
systems built to be compliant with TENA and are the heart of any logical range. 
TENA Tools are generally reusable TENA applications, made available to the 
community, that help facilitate the management of a logical range through the entire 
range event life cycle. 

• Non-TENA Applications (gray)—Range instrumentation/processing systems, 
systems-under-test, simulations, and command, control, communications, computers, 
intelligence, surveillance, and reconnaissance (C4ISR) systems not built in accordance 
with TENA but needed in a logical range. 

• The TENA Common Infrastructure (red)—Those software subsystems that provide the 
TENA Repository, as a means for storing applications, object models, and other 
reusable information; the TENA Middleware, for real-time information exchange; and 
the Logical Range Data Archive, for storing scenario data, data collected during an 
event, and summary information. 
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• The TENA Object Model (yellow)—The common language used for communication 
between all range resources and tools. The set of objects used in a logical range is 
called the “Logical Range Object Model (LROM)” and may contain TENA standard 
object definitions as well as non-standard object definitions. 

• TENA Utilities (blue)—Applications specifically designed to address issues related to 
usability or management of a logical range. 

This segmentation is designed specifically to address all of TENA’s driving 
requirements. Interoperability is addressed by the TENA Domain Specific Software 
Architecture, including the common TENA object model and infrastructure. Reusability is 
addressed through the use of a common infrastructure as well as through the existence of 
numerous gateways that can bridge a TENA logical range to other architectures, protocols, and 
systems. Composability is addressed through the use of certain TENA tools and utilities that 
access components and object definitions stored in the TENA Repository [tena01]. 

TENA enforces a higher level of model compliance through the use of a compiled object 
model that enables compile-time type checking and improves the reliability of the system. TENA 
has three levels of compliance, none of which is associated with formal compliance tests but use 
checklist-like constructs. 

 

Figure 11. TENA interpretations of the common constructs. 

Figure 11 shows how the TENA community has approached the common constructs. 
Simulations or Player Applications include a layer of generated middleware built for the specific 
Logical Range in which they are being used. This generated code uses the strong, type-safe, OO 
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programming mechanisms of the C++ language to tightly bind the TENA into the application. 
TENA users have to use programs built from the ground up, or thoroughly refactored, to use the 
OO techniques. The execution and integration benefits outweigh these development costs for 
TENA users. 

In summary, TENA offers additional OO programming constructs other than those 
offered by the HLA, including code generation for data marshaling and interfaces, with reduction 
in scope (i.e., addressing a subset of the HLA requirements). 
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4 ARCHITECTURE SERVICES 

This section describes the services provided by the architectures presented in the previous 
section. Some of the architectures have little explicit notion of a service (i.e., DIS) but service 
analogs are discussed. 

4.1 COMMON TRAINING INSTRUMENTATION ARCHITECTURE (CTIA) 
 
CTIA is based on a SOA. LT2 components within the CTIA framework interact with 

services via defined Interfaces (defined using CORBA Interface Definition Language [IDL]). 
The components use these CTIA services to mediate their interaction with each other through the 
CTIA framework. Broadly, the CTIA services can be grouped into two categories: Exercise 
Independent Services and Exercise Specific Services as illustrated in Tables 1and 2. The entries 
in each table give a brief explanation of the functionality of each service. 

T able 1. Exercise Independent Services. 

Registration Agent Components discover the Registration Agent through the CORBA 
Naming Service. The Registration Agent returns to the component 
its ID and Exercise Management reference used in exercise 
management. The Registration Agent provides algorithms to 
facilitate the assignment of components to the appropriate router 
and also assigns routers to “parent” routers. 

Component Service Supports persistence of component identity across component 
restarts. Maintains a component state when a component is out of 
communication. Publishes component state; allows query of 
component typing information. Associates component with host 
computer Brokers Component Commands. Mediates the 
commanding between controllers and controlees, ensuring 
command and result are logged as a single event.  

Exercise Management Service Provides a general mechanism for management of training range 
exercise data. Allows creation of new training range exercises. 
Provides access to information for exercises and exercise data. 
Allows association of entities, to include compute hosts, to 
specified exercise. Manages exercise databases. Provides API to 
retrieve references to other services. 

GPS Correction Factor Service Dissemination of digital GPS correction factors to tracker 
components that require them. Uses UDP multicast for distribution 
of DGPS (digital GPS); data packet is serialized using Common 
Data Representation (CDR) and defined using CORBA IDL. 

Metadata Service Provides the capability to define and modify component and 
battlespace object definitions to be managed as “CTIA Flexible 
Features.” Allows the introduction of additional objects and state 
data during an exercise. Provides support for file mapping, and 
document type services. Allows persistence of this information 
across exercises (will be exercise-specific starting with Spiral 5 
Increment 4). 
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T able 2. Exercise Specific Services. 

Event Dispatch Service Events are one of two mechanisms that facilitate component 
interaction: Commands, discussed under Component Service, and 
events. This service supports out-of-communication conditions and 
allows components to “pre-allocate” IDs for creation of primary 
objects. Events are validated and exception is returned to sender if 
any event in the list fails validation. Unreliable dispatch allows 
components to generate events without waiting for validation 
results (uses CORBA one way until Spiral 5, where a non-CORBA 
UDP unicast connection will be supported). 

Event Query Service Provides APIs to query logged events from the exercise database. 
Supports Playback and AAR. Provides APIs to query the event 
causality chain as a series of Cause And Effect Events. 

Event Subscription Service Allows event filtering mechanisms to automatically traverse object 
relationships to find events associated with a particular 
geographical region, type of component, or observer. 

Object History Service Provides a general mechanism for querying the CTIA database for 
historical information. Supports the retrieval of relationships 
between exercise data. Provides interface for historical queries that 
is similar to SQL queries. Supports traversal of complex object 
relationships. Uses the same filter mechanism as the Event 
Subscription Service. 

Object Management Service Provides a general mechanism for querying the CTIA database for 
current information. Provides interface similar to Object History 
Service, without the “time” parameter. Provides APIs to create 
certain types of primary objects. Other types are created by 
dispatching events. 

Rule Service Provides the capability to query for rules and alarms (e.g., Player 
out of Bounds). A rule establishes the conditions that lead to the 
generation of an alarm.  

Situational Awareness (SA) Region 
Management Service 

Provides a scalable means of providing tracking data for 
instrumented and non-instrumented battlespace objects, 
engagement data and training object data such as overlays, 
entities, and organizations as well as relationship data such as 
entity relationships with organizations. It supports generation of 
data feeds appropriate for SA displays. Such SA region data is 
delivered via UDP multicast stream. 

Tactical Message Service Provides C4I message format and metadata definitions defined as 
Flexible Features using the Extensible Markup Language (XML). 
Service provides API to query mapping between tactical roles and 
C4I addresses. 

Tracking Control Service Provides control over the rate at which trackers generate data to 
support large-scale exercises. The service is based on geographic 
region and allows overlapping regions with precedence levels and 
on entity type (i.e., real vs. simulated). Allows the specification of 
minimum thresholds for distance and orientation, as well as 
frequency. Allows the report of any entity movement. Allows 
services to determine that the tracker is “out of comms,” and uses 
redundant tracking data (if available) 

Tracking Data Query Service Supports the historical query of tracking data specifically to support 
playback and AAR.  

TENA Services Services to provide the ability to use the TENA middleware 
(introduced in Spiral 5). Uses elements of TENA Object Models. 
CTIA Services publishes and subscribes to TENA Entity Stateful 
Distributed Objects (SDOs). Range gateways are replaced by 
TENA middleware and a common LROM. All CTIA plug and play 
(PnP) components still communicate using CTIA framework. 
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4.2 DISTRIBUTED INTERACTIVE SIMULATION (DIS) 
DIS is a network-protocol-based simulation protocol that allows interoperability between 

real-time simulations of weapons platforms. The DIS protocol concentrates on the interoperation 
at the entity level, such as tanks, ships, aircraft, soldiers, and associated objects such as radios, 
laser designators, and sensors such as radar and Forward Looking Infrared Radar (FLIR). The 
protocol supports state updates for entities and objects and events such as collisions and weapons 
fire that occur in the real world. Because the computational metaphor in DIS is protocol based 
and not a “service-based” model (for the most part), it is difficult to compare DIS and the other 
simulation regimes in terms of services and object models. 

Rather, the DIS protocol centers on PDUs. It is an on-the-wire network protocol 
patterned after the Internet protocols. It evolved from the SIMNET protocol of the 1980s that 
was developed by the Army for connecting tank training simulators. DIS is specified in IEEE 
Standard 1278. The 1278.1 standard for DIS protocol defines the exact data structure for each 
PDU, along with rules for the content, timing, and related usage. Thus, DIS is independent of 
any programming language, operating system, or computer platform. A related communication 
profile standard, 1278.2, specifies how PDUs are transmitted through multicast, broadcast, or 
unicast User Datagram Protocol/Internet Protocol (UDP/IP) datagrams. 

The DIS standard is 700 pages of rules that speak directly to weapons platform modelers. 
These pages could be considered in effect the DIS conceptual model. As just one of hundreds of 
examples, DIS describes how to communicate a munitions detonation, possibly with secondary 
explosions and details of multiple separations of sub-munitions. This is not just the data type and 
format (syntactic interoperability) but also many pages of rules (semantic interoperability). 
Details of military operations and systems such as phased array radar, underwater acoustics, 
minefields, laser weapons, and cyber attacks are all supported and described to some detail in the 
DIS standard. 
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Table 3 categorizes PDUs into these protocol families: 

T able 3. PDU families. 

Entity Information/Interaction Entity state (Time Space Positioning Information and 
visual state) 
Collision 
General-purpose attributes 

Warfare Missiles, bombs, artillery 
Decoys, countermeasures 
Directed energy weapons 
Damage state 

Logistics Service, resupply, repair 
Emissions Regenerations Radar, laser designators, underwater acoustics, 

Identification Friend or Foe  
Radio communications  Voice, data link, intercom 
Minefields Minefield state, query, data 
Synthetic Environment Natural environmental processes and objects 
Information Operations (IO) IO action, IO report 
Live Entity Protocol Reduced bandwidth for radio links, not commonly used 
Non-Real-time Protocol No evidence that this gets used 
Simulation Management Start, Stop, Initial Conditions, Comment, etc. 
Entity Management Aggregate State, Transfer Ownership 

 
Only entries from Table 3 that are gray more directly correspond to HLA services. The 

semantics of these PDUs are presented below. 

4.2.1 Simulation Management 
 
The meaning and use for each PDU type in the simulation management category are 

given in Table 4. 

T able 4. Simulation management PDU “services.” 

PDU Description 
Start/Resume  How the Start/Resume of an exercise is communicated. 
Stop/Freeze  How a simulation is stopped or suspended (frozen).  
Acknowledge  The acknowledgment of the receipt of a Start/Resume PDU, Stop/Freeze PDU, Create Entity 

PDU, or a Remove Entity PDU is communicated by issuing an Acknowledge PDU. 
Action Request  A request from a Simulation Manager to a managed entity to perform a specified action is 

communicated using an Action Request PDU. 
Action Response  When an entity receives an Action Request PDU, that entity will acknowledge the receipt of 

the Action Request PDU with an Action Response PDU. 
Data Query  A request for data from an entity is communicated by issuing a Data Query PDU. 
Set Data  Initializing or changing internal state information is communicated using a Set Data PDU. 
Data  Information issued in response to a Data Query PDU or Set Data PDU is communicated 

using a Data PDU. 
Event Report  A managed entity reports the occurrence of a significant event to the simulation manager 

using an Event Report PDU. 
Comment  Arbitrary messages (character strings for example) are entered into the data stream by using 

a Comment PDU. 
Create Entity  The creation of a new entity is communicated using a Create Entity PDU. 
Remove Entity  The removal of an entity from an exercise is communicated with a Remove Entity PDU. 
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4.2.2 Entity Management 

4.2.2.1 Aggregate State 
 
In DIS, entities can be grouped to eliminate retransmission of their common attributes. 

This is accomplished through the concept of an Aggregate State PDU. 

4.2.2.2 Transfer Ownership 
An entity that is not an aggregate entity may be transferred from one federate to another. 

Individual attributes cannot be transferred in DIS. A federate is deemed to have implemented the 
Transfer Control function if it initiates or receives and processes the Transfer Control Request 
PDU. A federate that does not implement the Transfer Ownership function is not required to 
process any of the PDUs unique to this function. The PDUs associated with the Transfer 
Ownership functions are listed in Table 5. 

T able 5. Transfer Ownership PDUs. 

PDU Description 
Transfer Control Request (TCR) Request for control transfer, that need not be granted 
Set Record-R The PDU sent containing internal state data that is sent right after 

acknowledgement. 
Acknowledge-R The PDU sent to acknowledge request for ownership. 
Entity State When the federate ceding control receives the initial Entity State PDU from the 

federate that is obtaining control, it stops transmitting PDUs for the transferred 
entity and so no longer owns it. 

Event Report (Ownership) The federate acquiring ownership must report that they are now transmitting 
information about the transferred entity. This is accomplished with the Ownership 
Event Report PDU. 

Data Query (Ownership) If the federate that owns the entity has implemented the Transfer Ownership 
function, it is required to respond with an Ownership Data PDU. 

Data (Ownership) PDU issued in response to Data Query (Ownership). 
Record Query-R Used by a federate when requesting internal state data on an entity in preparation 

for deciding whether to initiate or respond to a transfer request. 

Figure 12 gives an example of how the PDUs summarized in Table 5 could be used to 
affect a transfer of control scenario in a DIS-based simulation. 
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Figure 12. Transfer of control example. 

4.2.3 Other Services 
Like most architectures, DIS provides the ability to update the state of objects and to 

transmit events. In DIS terminology, updates are accomplished with “state PDUs,” and events 
are transmitted with “transient PDUs.” This is analogous to object updates and interactions in 
HLA. Entities and objects are persistent so their state is updated when it changes. Events are 
transmitted every time they occur, and their data is transient. 

DIS specifies a multicast network service (or broadcast, a special case of multicast). This 
is a key factor in network bandwidth reduction and scalability. Any piece of data is sent only 
once, replicated in the network, and delivered to only those federates that are listening on that 
address or set of addresses. 

DIS specifies the Dead Reckoning service, which greatly reduces bandwidth and solves 
the problem of asynchronous frame rate and frame phasing in simulators. Spatial state 
information is transmitted only after it has diverted from its predicted path by a set threshold 
(typically 1 meter of position and 3 degrees of orientation), thus reducing update bandwidth. The 
receiving simulator extrapolates the spatial information between updates. Improper jumps in 
received spatial position that would normally occur in asynchronous simulators are eliminated by 
the extrapolation process. 

Even though time management is not supported in DIS, the handling of time is 
extensively specified. Distinctions and use of simulation time and real-world time, both relative 
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and absolute, are described to great detail. This is critical in real-time exercises and even more 
critical where latency in long-distance networks would cause unacceptable anomalies. 

The DIS heartbeat service overcomes two problems in large-scale networks. State PDU 
updates are forced for objects that have remain unchanged for the duration of their heartbeat 
period. This solves the problems of best-effort network delivery and “late joiners.” If a state 
update is dropped in a best-effort network, it is automatically re-sent within one heartbeat period. 
Late joiners, which technically are all federates joining the exercise after the first one, get the 
entire state of the exercise within one heartbeat period without the complication of requesting it. 
Heartbeat periods vary from 5 to 60 seconds, depending on the nature of the state data. 

Just as important as services that DIS specifies are those it avoids. Services that are 
impractical in large-scale or long-distance network implementations are not used by DIS. 
Examples are centralized servers and control computers, which are bottlenecks and single points 
of failure. Services requiring Transmission Control Protocol (TCP) connections between all 
federates are also non-scalable because they require connectivity on an order of N-squared. 

4.2.4 Comparison of DIS and HLA Operation 
An exercise scenario that illustrates the different paradigms is shown in Table 6. 

T able 6. PDU vs. HLA services example. 
Action DIS (action) HLA Service Comments 

Create an exercise Define (or use) an 
exercise ID 

Create federation execution  

Join the exercise Listen and send PDUs as 
appropriate 

Join federation execution Implicit vs. explicit 

Get an object ID (entity) Application creates a 
unique ID 

Request object ID(s) from 
the RTI 

 

Create an object (entity) Start sending entity state 
PDUs (ESPDUs) 

Instantiate object  

Discover new object 
(entity) 

ESPDU from unknown 
entity arrives 

Instantiate discovered object Call from RTI to federate 
software 

Tank moves forward Send entity state PDU Update attribute value 
(position) 

RTI sends only the 
changed data (position) 

Tank moves turret Send entity state PDU Update attribute value (turret 
orientation) 

RTI sends only the 
changed data (turret 
orientation) 

Tank fires at tank Send fire PDU Send interaction (direct fire) virtually identical 
Delete object (entity) Set deactivate flag in last 

ESPDU  
Delete object  

Leave the exercise Stop listening and 
sending PDUs 

Resign federation execution Implicit vs. explicit 

Terminate exercise All simulations stopped Destroy federation execution Implicit vs. explicit 
 
Despite their dissimilar computing models, there are natural analogs between DIS and the 

HLA RTI to satisfy the most basic requirements of each approach. One of the more apparent 
differences is that DIS sends all of the object attributes (the entity state PDU) when any attribute 
changes while an RTI application sends only the changed attributes. This is so because there is 
no service-based approach to do anything else. As a result, there are also differences in areas that 
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are implicit within the DIS specifications but are explicit (require service calls to the RTI) in the 
RTI specification. As an example, in the RTI, the application programmer must request an object 
(entity) ID and then instantiate the object. In DIS, each simulation assigns object IDs according 
to an algorithm based on the DIS assigned site number and the host number. 

4.3 HIGH LEVEL ARCHITECTURE (HLA) 
There are several versions of the HLA architecture. The first, referred to simply as HLA 

1.3, was sponsored by the U.S. Defense Modeling and Simulation Office. A subsequent version, 
often referred to simply as 1516, is an IEEE-approved refinement to the original HLA 
specification. In like manner, a new HLA standard called, colloquially, 1516 Evolved is late in 
the IEEE approval process. 

For the purposes of illustration, the services associated with IEEE 1516.1 will be 
illustrated here. The HLA IEEE 1516.1 defines six basic RTI service groups that together 
support and control federation executions and the exchange of information among federates 
during a federation execution. Table 7 provides a summary of these service groups. 

T able 7. HLA 1516 service groupings. 

Federation Management  The set of services that supports the creation, dynamic control, modification, 
and deletion of a federation execution. 

Declaration Management  The set of services that allows joined federates to declare their intention to 
either generate or receive information during a federation execution. 

Object Management The set of services that allows joined federates to register, modify, and delete 
object instances, and to send and receive interactions 

Ownership Management The set of services that supports the transfer of ownership of instance attributes 
among joined federates. 

Time Management The set of services that can control the advancement of each federate along the 
federation time axis. 

Data Distribution Management The set of services that allows joined federates to reduce both the transmission 
and reception of irrelevant data. 

 
In the sections that follow, a brief description of each of the services is given. For a 

detailed description and complete semantics of the proper section, IEEE Std 1516, High Level 
Architecture (HLA)—Federate Interface Specification, should be consulted. 

4.3.1 Federation Management 
Federation management refers to the creation, dynamic control, modification, and 

deletion of a federation execution. The functionality of these services is summarized in Table 8 
and described fully in the HLA specification. 

Before a federate can use any of the RTI services, it must first establish communications 
with the RTI. To facilitate this connection, the HLA standard uses two separate “ambassadors.” 
The first ambassador, called the RTI ambassador, allows the federate to make service requests on 
the RTI. Conversely, the federate ambassador accepts requests from the RTI on behalf of the 
federate. 
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T able 8. Federation management services. 
Federation Management Service Description 

Create Federation Execution The service creates new federation executions and adds them 
to the set of supported federation executions. The service 
needs a valid FOM document. (See IEEE Std 1516.2-2000 to 
initialize a newly created federation.) 

Destroy Federation Execution Service removes a federation execution from the RTI set of 
supported federation executions.  

Join Federation Execution The service affiliates a federate with a federation execution 
indicating the intention to participate in the specified federation. 

Resign Federation Execution The service indicates the requested cessation of federation 
participation. Before resigning, ownership of instance attributes 
held by the federate are resolved.  

Register Federation Synchronization Point The Register Federation Synchronization Point service is used 
to initiate the registration of an upcoming synchronization point . 

Synchronization Point Achieved The Synchronization Point Achieved service informs the RTI 
that a federate has reached the specified synchronization point.  

4.3.2 Declaration Management (DM) 
The HLA data distribution model and the associated services require that simulations 

declare to the RTI their desire to generate and/or receive object and state information. These 
declarations must be consistent with the FOM and are made using services described in Table 9. 

In like manner, interactions generated and received by a federate must also be declared. 
When a federate sends data, that data is available to all federates that subscribe to that data (e.g., 
using an Observer Design Pattern). The RTI has no services to restrict which federate 
subscriptions receive data. Furthermore, the RTI does not have any understanding of the data it is 
transporting (i.e., ground truth vs. perceived truth). It is assumed that federates will only 
subscribe to data, and will not use information that would not normally be available to them to 
make decisions that may inappropriately bias the outcome of the federation execution. 

Joined federates use DM services to declare their intention to generate or use information 
that is appropriate for them. There are no services to filter or otherwise check the legality or 
safety of data being exchanged. A federate invokes the appropriate DM services before it 
registers object instances, updates instance attribute values, and sends interactions. Joined 
federates use DM services to declare their intention to receive information. 
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T able 9. Declaration management. 
Declaration Management Service Description 

Publish Object Class Attributes 
Federate must explicitly state every object class it intends to produce 
via this service. Only the federate that owns an instance attribute shall 
provide values for that instance attribute to the federation. 

Unpublish Object Class Attributes 
Service for federate to unpublish a whole object class, informing the 
RTI that the federate shall no longer be capable of registering object 
instances of the specified object class. 

Publish Interaction Class Informs the RTI of the classes of interactions that the federate will send 
to the federation execution. 

Unpublish Interaction Class Informs the RTI that the federate will no longer send interactions of the 
specified class. 

Subscribe Object Class Attributes Specifies an object class for which the RTI will notify the federate of 
discovery of object instances.  

Unsubscribe Object Class Attributes 
Service to unsubscribe a whole class or class attributes informing the 
RTI to stop notifying the federate of object instance discovery at the 
specified object class. 

Subscribe Interaction Class 

Specifies an interaction class for which the RTI notifies the federate of 
sent interactions by invoking the Receive Interaction service at the 
joined federate. When an interaction is received by a federate, the 
received class of the interaction shall be the interaction’s sent class, if 
subscribed. Otherwise, the received class is the closest superclass of 
the sent class that is subscribed at the time the interaction is received. 
Only the parameters from the interaction’s received class and its 
superclasses will be received. 

Unsubscribe Interaction Class 
The Unsubscribe Interaction Class service informs the RTI that it no 
longer needs to notify the federate of sent interactions of the specified 
interaction class. 

Start Registration for Object Class This service notifies the federate that registration of new object 
instances of the specified object class is advised.  

Stop Registration for Object Class This service notifies the federate that registration of new object 
instances of the specified object class is not advised.  

Turn Interaction On  

The Turn Interaction On service shall notify the federate that the 
specified class of interactions is relevant because it or a superclass is 
actively subscribed to by at least one other federate in the federation 
execution.  

Turn Interaction Off  The Turn Interaction Off service indicates to the federate that the 
specified class of interactions is not relevant.  
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4.3.3 Object Management 
 

Table 10 describes object management. 

T able 10.  Object management. 

Reserve Object Instance Name This service requests that the RTI attempt to reserve the name as a federation 
execution-wide unique name.  

Object Instance Name 
Reserved  

Notifies the federate whether the name provided in a previous invocation of 
Register Object Instance Name service has been successfully reserved. 

Register Object Instance The RTI creates a federation execution-wide unique object instance handle and 
pairs that handle with an instance of the supplied object class.  

Discover Object Instance  The service informs the federate to discover an object instance. 

Update Attribute Values 
The service provides instance attribute values to the federation. The exact 
semantics of the services depends on the time management policy. (See Section 
6.6 of IEEE Std 1516.) 

Reflect Attribute Value  

The service provides the federate with new values for the specified instance 
attributes. This service, coupled with the Update Attribute Values service, is the 
primary data exchange mechanism supported by the RTI. The exact semantics of 
the services depends on the time management policy. (See Section 6.7 of IEEE 
Std 1516.) 

Send Interaction 

The service sends an interaction into the federation. The interaction parameters 
are those in the specified class and all superclasses, as defined in the FOM 
Document Data (FDD) . The complete semantics of the service depends on the 
time-management regime being used. (See Section 6.8 of IEEE Std 1516.)  

Receive Interaction  
The service (see also Send Interaction for definition of interaction) provides the 
federate with a sent interaction. The complete semantics of the service depends 
on the time-management regime being used. (See Section 6.9 of IEEE Std 1516.) 

Delete Object Instance 

The service informs the federation that an object instance that has the 
HLAprivilegeToDeleteObject instance attribute that is owned by the joined 
federate is to be removed from the federation execution. The complete semantics 
of the service depends on the time-management regime being used. (See Section 
6.10 of IEEE Std 1516.) 

Remove Object Instance  The service informs the federate that an object instance has been deleted from 
the federation execution being used (see Section 6.10 of IEEE Std 1516). 

Local Delete Object Instance 
The service informs the RTI that it will treat the specified object instance as if the 
RTI had never notified the invoking federate to discover the object instance. The 
object instance will not be removed from the federation execution.  

Change Attribute 
Transportation Type 

Invoking the service changes the transportation type for all future Update Attribute 
Values service invocations for the specified attributes of the specified object 
instance only for the invoking joined federate.  

Change Interaction 
Transportation Type 

The transportation type for each interaction is initialized from the interaction class 
description in the FDD interaction class for the invoking federate only.  

Attributes in Scope The service notifies the federate that the specified attributes for the object 
instance are in scope for the joined federate.  

Attributes Out of Scope The service notifies the federate that the specified attributes of the object instance 
are out of scope for the joined federate.  

Request Attribute Value 
Update 

The service is used to stimulate the update of values of specified attributes. When 
this service is used, the RTI solicits the current values of the specified attributes 
from their owners using the Provide Attribute Value Update service for owned 
instance attributes.  

Provide Attribute Value Update  The service requests the current values for attributes owned by the federate for a 
given object instance.  

Turn Updates On For Object 
Instance  

The service requests the current values for attributes owned by the federate for a 
given object instance are required somewhere in the federation execution.  

Turn Updates Off For Object 
Instance  

The service indicates to the federate that the values of the specified attributes of 
the object instance are not required anywhere in the federation execution.  
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4.3.4 Ownership Management 
The ownership management services are used by joined federates and the RTI to transfer 

ownership of instance attributes among joined federates (Table 11). The ability to transfer 
ownership of instance attributes among joined federates is required to support the cooperative 
modeling of a given object instance across a federation. 

T able 11.  Ownership management. 

Unconditional Attribute Ownership 
Divestiture 

Notifies the RTI that the federate no longer wants to own the 
specified instance attributes of the specified object instance.  

Negotiated Attribute Ownership Divestiture Notifies the RTI that the federate it no longer wants to own the 
specified instance attributes of the specified object instance. 
Ownership is transferred only if some other federate accepts 
ownership. 

Request Attribute Ownership Assumption  The service informs the federate that the specified instance attributes 
are available for transfer of ownership to the joined federate.  

Request Divestiture Confirmation The service notifies the joined federate that new owners have been 
found for the specified instance attributes and that the federate is free 
to complete negotiated divestiture of the specified instance attributes. 

Confirm Divestiture The Confirm Divestiture service informs the RTI that the joined 
federate wants to complete negotiated divestiture for the specified 
instance attributes. 

Attribute Ownership Acquisition Notification  The service notifies the federate that it now owns the specified set of 
instance attributes. 

Attribute Ownership Acquisition The service requests the ownership of the specified instance 
attributes of the specified object instance.  

Attribute Ownership Acquisition If Available The service requests the ownership of the specified instance 
attributes of the specified object instance only if the instance attribute 
is un-owned by all joined federates or it is in the process of being 
divested by its owner.  

Attribute Ownership Unavailable  The service informs the federate that the specified instance attributes 
were not available for ownership acquisition. 

Request Attribute Ownership Release  The service requests that the federate release ownership of the 
specified instance attributes of the specified object instance.  

Attribute Ownership Divestiture If Wanted The service notifies the RTI that the federate is willing to divest itself 
of ownership of the specified instance attributes if another federate is 
attempting to acquire ownership of them.  

Cancel Negotiated Attribute Ownership 
Divestiture 

The service notifies the RTI that the federate no longer wants to 
divest ownership of the specified instance attributes. 

Cancel Attribute Ownership Acquisition The service notifies the RTI that the federate no longer wants to 
acquire ownership of the specified instance attributes.  

Confirm Attribute Ownership Acquisition 
Cancellation 

The service informs the federate that the specified instance attributes 
are no longer candidates for ownership acquisition. 

Query Attribute Ownership The service is used to determine the owner of the specified instance 
attribute. The RTI shall provide the instance attribute owner 
information via the Inform Attribute Ownership service invocation. 

Inform Attribute Ownership The service is used to provide ownership information for the specified 
instance attribute.  

Is Attribute Owned By Federate The service is used to determine if the specified instance attribute of 
the specified object instance designator is owned by the invoking 
joined federate.  

4.3.5 Time Management 
HLA accommodates a wide variety of internal time management mechanisms that foster 

interoperability through time management transparency (e.g., the local time management 
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mechanism used within each federate must not be visible to other federates1 and yet services and 
associated mechanisms provide a federation execution a way to order the delivery of messages 
throughout the federation execution.) Use of the HLA time management services ensure 
consistent message delivery order. Most simulations are written so that messages containing 
events or updates have an associated “time stamp” and must be delivered to the receiving 
federate in the correct order with respect to this time stamp. Messages that must be delivered in 
the correct time order are said to be delivered in Time Stamped Order (TSO). A simulation that 
is publishing time-stamped data may publish messages in any time order, and the RTI will 
guarantee their delivery the in the correct time order. Other types of messages, such as 
informational messages, may not have an associated time stamp, and are delivered upon arrival, 
without regard to the time when the message was sent. Messages delivered in the order in which 
they are received are said to be delivered in Receive Order (RO). 2

In order to guarantee the correct, time-ordered delivery of messages to a federate, the 
time for each federate must be coordinated with the time of other federates. The time 
management services in HLA allow this functionality. 

 

In order for a joined federate to advance its logical time, it shall request an advance 
explicitly and only by invoking one of the following services: 

• Time Advance Request (TAR) 

• Time Advance Request Available (TARA) 

• Next Message Request (NMR) 

• Next Message Request Available (NMRA) 

• Flush Queue Request (FQR) 

These and the other HLA time management services are explained more fully in Table 12. 

 

  

                                                           
1 http://www.sisostds.org/webletter/siso/iss_35/art_197.htm 
2 www.ecst.csuchico.edu/~hla/LectureNotes/HLA_1.3NG_M1_P4.pdf 
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T able 12.  Time management. 

Enable time regulation The service enables time-regulation for the federate enabling it to send TSO messages. 
The federate specifies its lookahead. 

Time Regulation Enabled  The service indicates that a prior request to enable time-regulation has been honored.  

Disable Time Regulation The service indicates that the joined federate is disabling time-regulation. Subsequent 
messages sent by the joined federate are sent as RO messages. 

Enable Time Constrained The service requests that the federate invoking the service become time-constrained. 
The RTI indicates that the federate is time-constrained by invoking the Time 
Constrained Enabled service. 

Time Constrained Enabled  Invocation of the service indicates that a prior request to become time-constrained has 
been honored. The value of this service’s argument indicates the new logical time of the 
federate.  

Disable Time Constrained The service shall indicate that the federate is disabling time-regulation. Subsequent 
messages sent by the federate shall be sent automatically as RO messages. 

Time Advance Request 
(TAR) 

The service requests an advance of the federate’s logical time and releases messages 
for delivery to the federate. All RO messages and all TSO that are time stamped before 
the specified Logical Time are delivered to the federate. Messages are received by the 
Federate via Receive Interaction, Reflect Attribute Values, and Remove Object 
Instance services. (See Section 8.8 of IEEE Std 1516.) 

Time Advance Request 
Available 

The service is similar to TAR except that the RTI does not guarantee delivery of all 
messages with time stamps equal to T when a Time Advance Grant to logical time T is 
issued (see Section 8.13 of IEEE Std 1516). 

Next Message Request The service requests the logical time of the federate to be advanced to the time stamp 
of the next TSO message that will be delivered to the federate, provided that message 
has a time stamp no greater than the logical time specified in the request (see Section 
8.10 of IEEE Std 1516). 

Next Message Request 
Available 

The service requests the federate to advance its logical time using the time stamp of 
the next TSO message for the federate, if its time stamp is no greater than the logical 
time specified in the request. It’s like Next Message Request. (See Section 8.11 of 
IEEE Std 1516.) 

Flush Queue Request The service requests that all messages queued in the RTI that the federate will receive 
as TSO messages be delivered now (see Section 8.12 of IEEE Std 1516).  

Time Advance Grant  The service indicates that a prior request to advance the joined federate’s logical time 
has been honored (see Section 8.13 of IEEE Std 1516). 

Enable Asynchronous 
Delivery 

Invocation of the service instructs the RTI to deliver received RO messages to the 
invoking federate when it is in either the Time Advancing or Time Granted state. 

Disable Asynchronous 
Delivery 

Invocation of the service instructs the RTI to deliver RO messages to the invoking time-
constrained federate when the federate is in the Time Advancing state. 

Query GALT The service requests the invoking federate’s current Greatest Available Logical Time 
(GALT).  

Query Logical Time The service requests the current logical time of the invoking federate. 
Query LITS The service requests the invoking federate’s current Least Incoming Time Stamp 

(LITS).  
Modify Lookahead The service requests a change to the joined federate’s lookahead. The actual 

lookahead is initially unchanged. (See Section 8.19 of IEEE Std 1516.) 
Query Lookahead The service queries the RTI for the federate’s current actual lookahead. The current 

value of actual lookahead may differ temporarily from the requested lookahead given in 
the Modify Lookahead service if the joined federate is attempting to reduce its actual 
lookahead. (See Modify Lookahead.) 

Retract The service is used by a federate to notify the federation execution that a message 
previously sent needs to be retracted (see Section 8.21 of IEEE Std 1516 ). 

4.3.6 Data Distribution Management (DDM) 
The HLA DDM services filter the simulation data received by the federates in a 

federation based on the federates’ data subscriptions based on regions. Using DDM services, a 
federate can also subscribe to (ranges of) attribute values. The goal is to filter as much 
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information as possible at the source. Producers and consumers of data communicated between 
joined federates use DDM services to bound the relevance of communicated data, enabling the 
RTI to recognize the irrelevant data and prevent its delivery to consumers. 

The DDM is based on the following concepts: 

• Dimension—A named interval of non-negative integers. 

• Range—A continuous semi-open interval on a dimension with upper bound and lower 
bound. 

• Region specification—A set of ranges and associated dimension. 

• Region realization—Associated with an instance for RTI services. 

The services allow the intelligent filtering of data in a “grid” using a grid-based 
architecture for an arbitrary number of dimensions and regions. The DDM is explained 
completely in Section 9.1 of IEEE Std 1516, High Level Architecture (HLA)—Federate Interface 
Specification. See Table 13. 

T able 13.  Data distribution management. 

Create Region The service creates a region that has the specified dimensions. The region may be used 
for either update or subscription. 

Commit Region 
Modifications 

The service informs the RTI about changes to the ranges of the regions. 

Delete Region The service deletes the specified region. A region in use for subscription or update should 
not be deleted. 

Register Object 
Instance with Region 

The service creates a unique object instance designator for the supplied object class. This 
service is used to create an object instance and simultaneously associate update regions 
with instance attributes of that object instance. (See Section 9.5 of IEEE Std 1516.)  

Associate Regions for 
Updates 

The service associates regions to be used for updates with instance attributes of a specific 
object instance. The association is used by the Update Attribute Values service to route 
data to subscribers whose subscription region sets overlap the specified update region set 
(see Section 9.6 of IEEE Std 1516).  

Unassociate Regions for 
Updates 

The service removes the association between the regions and the specified instance 
attributes.  

Subscribe Object Class 
Attributes with Regions 

The service specifies an object class that the RTI should begin notifying the federate of 
discovery of instantiated object instances when at least one of that object instance’s 
instance attributes are in scope (see Section 9.8 of IEEE Std 1516).  

Unsubscribe Object 
Class Attributes with 
Regions 

The service informs the RTI that it should stop notifying the joined federate of object 
instance discoveries and attribute updates for instance attributes of the specified object 
class in the specified region (see Section 9.9 of IEEE Std 1516).  

Subscribe Interaction 
Class with Regions 

The service specifies the class of interactions that are delivered to the federate, taking the 
region into account. This service and subsequent related RTI operations shall behave 
analogously to the Subscribe Interaction Class service as described in Table 8. (See 
Section 9.10 of IEEE Std 1516.)  

Unsubscribe Interaction 
Class with Regions 

The service informs the RTI to no longer notify the federate of interactions of the specified 
class that are sent into the specified region. 

Send Interaction with 
Regions 

The service sends an interaction into the federation. The interaction parameters will only 
be those in the specified class and all superclasses, as defined in the FDD. The regions 
shall be used to limit the scope of potential receivers of the interaction. (See Section 9.12 
of IEEE Std 1516.)  

Request Attribute Value 
Update with Regions 

The service is used to stimulate the update of values of specified attributes. The resulting 
Provide Attribute Value Update service invocations issued by the RTI are consistent with 
the region sets provided to this service. (See Section 9.13 of IEEE Std 1516.)  
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4.4 TEST AND TRAINING ENABLING ARCHITECTURE (TENA) 
The computational metaphor of TENA is different from the protocol-based DIS or more 

service-oriented architectures of CTIA or HLA. TENA’s Domain-Specific Software Architecture 
is a specification of the common software building blocks of a domain, based on a set of objects 
that model that domain that leads to a pool of reusable, interoperable, composable applications. It 
is through calls on objects within this framework that a simulation is constructed and executed. 

A meta-model is a description of the features available for use in formulating an object 
model. Since the TENA Object Model itself is the “language” that provides the basis for 
interoperable communication between TENA systems, this “language” must be based on a meta-
model that is sophisticated enough to be able to handle any type of information the TENA 
community may need to represent. 

There are three main categories of service that the TENA middleware must support. 
These services provide the underlying functionality for the different types of TENA simulation 
information that need to be encoded and standardized. These three services can be summarized 
as objects with definite lifetimes during the logical range (i.e., simulation execution): 

1. Stateful Distributed Objects (SDOs) 
2. Transient objects (messages) 
3. Streaming information (data streams). 

SDOs are objects that have a non-zero lifetime and have a state that evolves during the 
execution of the simulation. They have remotely invocable interfaces and a publication state that 
is disseminated to client applications. 

An SDO is a combination of two powerful concepts: a distributed object paradigm (like 
the one used in CORBA) and a distributed publish and subscribe paradigm (like the one used in 
HLA). “A conventional distributed object-oriented system offers no direct support to the user for 
disseminating data from a single source to multiple destinations. A conventional publish-
subscribe system does not provide the abstraction of objects with a set of methods in their 
interface. An SDO is an object that provides a location-transparent interface to its methods as 
well as the notion of publication state. The publication state of an SDO is data that is 
disseminated from the creator of an instance of an SDO to all parties that have indicated their 
interest in that SDO’s data through a subscription. Interested subscribers receive [proxies] to 
SDOs. With an SDO [proxy] a subscriber can invoke methods on its interface, as can be done 
with a CORBA [proxy] to a distributed object. In addition, an SDO [proxy] provides the 
programmer the ability to read the publication state of the SDO as if it were local data, as can be 
done in many distributed shared memory systems.”3

                                                           
3 Nooseworthy, J. R., “IKE 2–Implementing the Stateful Distributed Object Paradigm,” in Proceeding of the 5th IEEE 

International Symposium on Object-Oriented Real-Time Distributed Computing (ISORC 202), 29 Apr–1 May 2002. 
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An SDO exists only in a single application, in a single process space. This application is 
called the “server” or “owner” of this particular SDO. There is only one owner application of any 
particular SDO instance at any one time. The SDO instance itself is called the “servant.” Proxies 
to this servant that have a local cache of the servant’s publication state may exist in any 
application in the logical range, including the server application. This concept is illustrated in 
Figure 13. 

 

Figure 13. SDO proxies and servants: Their contents and relationships. 

An SDO may singly inherit from another SDO. An SDO may also implement multiple 
interfaces. Interfaces, like those in the Java programming language, are named sets of operations. 
An SDO may implement as many interfaces as it needs to. The actual implementation of the 
methods is done by the logical range developers when they define and create an object in the 
LROM. 

Composition is the most important aspect of the TENA meta-model. The ability to 
construct SDOs that contain other SDOs is critical to the creation of a standard set of reusable 
TENA object definitions. Since the TENA meta-model allows composition, TENA object model 
developers can focus their efforts on standardizing small, reusable, “building block” objects, 
rather than having to define the entire object model all at once. 

The remotely invocable methods on an object are intended for one-to-one 
communication, in which an object or application wants to communicate something to a specific 
single object. Publication state, on the other hand, is intended for one-to-many communication, 
because an object’s publication state is disseminated to many recipients. 

Messages are single transient bundles of information that are published by applications 
and consumed by subscribing applications. Messages represent single instantaneous objects that 
may be transmitted between publishers and subscribers. Messages, like SDOs, support single 
inheritance for implementation, multiple inheritance of interfaces, and composition. Messages 
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are intended for one-application-to-many-applications communication. For single-application-to-
single-application communication, the Application Management Object is used. 

Data streams represent repetitive, isochronous streams of information, such as audio, 
video, or telemetry. Data streams have fallen into disuse since high-quality existing commercial 
protocols for voice and video usually provide an adequate mechanism for transmission of these 
types of information.  
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5 SUPPORT TOOLS  

A common theme with each of the architectures is the addition, either by an architecture 
distributor, by an architecture vendor, by third parties, or developed by end users, of useful 
support tools that allow LVC simulations to work with external entities. These external entities 
can be the simulation operators, end users, simulators, stimulators, or simulation management 
systems (such as gateways to other simulation architectures), to name just a few examples. This 
section presents an overview of the support tools available for each of the four architectures we 
examined. 

There are more support tools available than can be listed within a document such as this. 
For this reason, categories of support tools are presented, with a listing of example support tools. 
The categorizations used are those that the vendors use for their products and should not be 
interpreted as the categorizations of support tools that may result in the overall Convergence 
Team effort or work by other teams within the LVCAR implementation project. Also, mention of 
a specific tool does not constitute endorsement of that tool. 

5.1 COMMON TRAINING INSTRUMENTATION ARCHITECTURE (CTIA) 
SUPPORT TOOLS 

As described in Section 4.1, the CTIA architecture has a collection of services and 
instrumentation capabilities that serve as APIs to allow support tools access to data and data-
exchange components of a running CTIA distributed simulation. In the CTIA architecture, the 
word “component” is formally defined as plug-ins that allow modular software to be added. This 
holds true for the support tools, which are treated as components. They are numerous and 
provide a rich environment for the developer/integrator to use. 

The support tools for CTIA are in the categories of planning, system control, exercise 
control, data collection, battlefield realism, tactical analysis and feedback, and infrastructure. The 
CTIA community refers to these categories as “Functional Capability Groups.” Each of these is 
addressed in a subsection below. The description of each of these tools was extracted, in whole 
or in part, from the Live Training Product Line (LT2) Overview Briefing [ctia03]. Some of the 
tools listed were developed specifically for the LT2 project, and the details for this are listed in 
the briefing if this distinction is of interest to the reader. 

5.1.1 Planning 
This section covers the CTIA planning components. 

5.1.1.1 Battle Roster 
The Battle Roster is used during exercise planning to import battle roster data into the 

CTIA exercise database. A typical battle roster contains a list of participants that are being 
trained in an exercise. 
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5.1.1.2 Combat Training Center (CTC) Data Collection Plan Toolset 
The Data Collection Plan (DCP) Toolset provides the ability for a database administrator 

to easily manage and manipulate data within a DCP database. The DCP database contains 
training manuals composed of data defined by complex relations. The goal of the DCP toolset is 
to take the rather complex process of managing/updating the data and turn it into a simple 
process for an end user. 

5.1.1.3 DCP Editor 
The purpose of the DCP Editor is to create and edit the Training Database, thereby 

constructing the source for procedures, process, data, and information by which the Training 
System appraises unit, leader, and soldier performance. This database provides all the necessary 
information to trainers and training analysts to achieve comprehensive and objective feedback to 
the training unit. Its primary purpose is to support the AAR, and its secondary purpose is to 
support the Take Home Package (THP). 

5.1.1.4 Embedded Battle Roster 
The Embedded Battle Roster provides the functionality to manipulate a battle roster. 

5.1.1.5 Force Structure 
Force Structure is a CTIA-compliant component that is responsible for creating and 

editing force structures. 

5.1.1.6 Instrumentation Scan 
The Instrumentation Scan component can be used to help facilitate the automation of 

creating battle rosters, issuing player unit hardware to individuals, and recovery of player unit 
hardware upon exercise completion. This is accomplished by scanning player unit hardware and 
individual’s common access cards and compiling a file that can then be imported into the system. 

5.1.1.7 Range Data Editor 
The Range Data Editor component can be used to manage the allocation of range assets 

(e.g., targets, target lifters, cameras, etc.) to a specific range and information associated with 
their use at that range. 

5.1.1.8 Range Tracking Admin Tool 
The Range Tracking Admin Tool is a component designed to create and manage 

situational awareness (SA) regions and tracking control (TC) regions for gunnery ranges. 

5.1.1.9 Roles and Permissions 
This collective function provides a graphical user interface (GUI) for editing user roles 

and data access permissions. 

5.1.2 System Control (SYSCON) 
This section covers the CTIA system control components. 
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5.1.2.1 2D Map 
The Two-Dimensional (2D) Map component provides map functionality in a stand-alone 

map component and as an interface to be used by other LT2 components. The 2D Map 
component provides an API that allows other LT2 components to provide specialized views of 
the battle space. 

5.1.2.2 3D Viewer 
The Three-Dimensional (3D) Viewer component provides both a stand-alone component 

and an embeddable component to be used as part of a composite system. 

5.1.2.3 Asset Database Resource Manager (ADRM) 
The Asset Database Resource Manager component is responsible for assisting the user 

with the allocation and management of training resources for instrumented, live collective 
training exercises. This component will typically be used during the planning phase of an 
exercise. The component will provide users with the capability for creation, import, and retrieval 
of equipment data into/from the asset database. 

5.1.2.4 Combat Training Center System Control (SysCon) 
SysCon provides the ability for the Tactical Control Officer (TCO) to define a rotation, 

prepare a rotation, run a rotation, and manage a rotation. 

5.1.2.5 CTIA Explorer 
The CtiaExplorer is a .Net application that dynamically queries instances of CTIA 

services for information on exercises, components, entities, and tracking control regions. 

5.1.2.6 Digital Tactical Monitoring 
The CTC Digital Tactical Monitoring (DTM) component interfaces with the Tactical 

Message Database and Common Training Instrumentation Architecture Services to provide a 
way to monitor tactical messages within CTIA Services. The CTC DTM component takes new 
tactical messages and sends them to CTIA Services as the appropriate event. 

5.1.2.7 Event Generator 
The Event Generator Processor (EGP) is a non-interactive processor that takes CTIA 

tracking events and performs analysis on them to determine if a derived event needs to be 
published. The processor will publish line-crossing, area-entry, and area-exit events based upon 
tracking data updates in respect to the tactical graphics in the system. 

5.1.2.8 GPS Support 
The Global Positioning System (GPS) Support contains three main components: the GPS 

Base Station, GPS Tracker, and Military Grid Reference System (MGRS) Display. 

5.1.2.9 Instrumentation Status and Control (ISC) 
Instrumentation Status and Control (ISC) provides the ability for the TCO to monitor the 

status of various instrumentation devices, such as Player Units (PUs), and send them commands. 
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5.1.2.10 Pairing Processor 
The Pairing Processor is a non-interactive component that captures and analyzes CTIA 

events to determine if a derived event needs to be published. The intention of the Pairing 
Processor is to pair related events based on strictly defined criteria set. The Pairing Processor 
subscribes to the CTIA Services component to receive all Weapon Fire and Hit Detection 
Events. As these events are received from CTIA Services, the Pairing Processor adjudicates the 
events to determine if they are truly events that should be paired. 

5.1.2.11 System Control (SYSCON) 
The System Control (SYSCON), which is separate and different from the CTC SysCon 

component, is an interactive CTIA-compliant component that has two main purposes: monitoring 
ranges, and managing and creating Training Events and runs. The SYSCON component provides 
a set of displays that allow the user to monitor the current status of all the range complex 
instrumentations that communicate with the Range Operations Center (ROC). 

5.1.2.12 System Technical Monitoring (STM) 
The STM system collects and presents status information about hardware and software 

executing in a distributed network. The information is gathered through a number of different 
mechanisms, including Simple Network Management Protocol (SNMP) and operating system 
calls. 

5.1.2.13 Tracker Monitor 
The Tracker Monitor application monitors the master exercise and instructs simple 

trackers and trackers to join a particular rotation exercise based on the configuration defined at 
its creation. 

5.1.3 Exercise Control (EXCON) 
This section covers the CTIA exercise control components. 

5.1.3.1 Ad Hoc Query Tool 
The LT2 Ad Hoc Query is a component designed for making LT2 GUI Framework 

widgets available in Microsoft Office applications for the purpose of creating custom CTIA 
Exercise Reports. 

5.1.3.2 Alarms and Alerts 
The Alarms and Alerts Component (AAC) is a component developed for analyzing, 

publishing, and detecting Alarm and Event Subscriptions. The user can specify when to be 
notified by specifying conditions within Rules, which will trigger an Alarm. Alarms are usually 
safety issues that are exercise-global and are received by all users. The user is capable of 
subscribing to events from any point in time during the exercise. As these events occur or are 
retrieved from the system, they are sent to the Inbox Component. 
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5.1.3.3 Close Air Support (CAS) Mission Editor 
The Close Air Support Mission Editor Tool (CAST) is an interactive GUI application 

provided to support the creation, management, and execution of close air support missions. 

5.1.3.4 CTC Reports 
The CTC Reports component provides report templates for Observer Controllers to 

submit standardized reports electronically. Reports can be filed when an event occurs while 
others are filed on a daily basis or a mission basis. 

5.1.3.5 Derived Tracking Processor 
The Derived Tracking Processor is a non-interactive component designed to provide 

tracking events for entities that depend on another entity’s tracking data. 

5.1.3.6 Entity Commander 
The Entity Commander component provides a set of commands available to update 

controlled entities. 

5.1.3.7 Entity Property Grid (EPG) 
The Entity Property Grid (EPG) LT2 component was developed to display element 

properties and the values associated with those properties. 

5.1.3.8 The Exercise Controller 
The Exercise Controller (EXCON) orchestrates an aggregate of components for the 

execution of Tank and Bradley Gunnery Qualification for digital ranges. Runs are instances of 
scenarios composed of Steps based on Army doctrine. 

5.1.3.9 Exercise Assistant 
The Exercise Assistant component provides a configurable GUI used to guide the user 

through the steps involved for each state of an exercise. 

5.1.3.10 Exercise Manager 
The Exercise Manager provides configuration, control, and views of the CTIA Exercise 

instantiations in the system. 

5.1.3.11 Exercise Tree 
The Exercise Tree is a component used for viewing and editing objects relevant to the 

training audience. 

5.1.3.12 Inbox 
The LT2 Inbox integrates Microsoft Outlook with a CTIA system, allowing users to 

view, manage, and interact with CTIA Observations, Reports, Alerts, and Battle Space Events as 
familiar email-like messages. Once these items are placed in the Inbox, they can be managed like 
any other Outlook email message using Outlook’s searching, filtering, sorting, and grouping 
capabilities. 
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5.1.3.13 Participant Definition 
The purpose of the Participant Definition Tool (PDT) component is to allow the end user 

to create/edit participant entities as part of an exercise. Participants are entities such as personnel, 
weapon, equipment, and platforms that the user wishes to track during an exercise. 

5.1.3.14 Playback 
The Playback component enables users to replay activities that occurred in a training 

exercise. Its purpose is to create objective replays of the battlespace/environment surrounding a 
unit undergoing training. The result is suitable for use as an input to the production of formal 
AARs. The Playback component may also be used as a presentation tool by lower-echelon 
observer/controllers (OCs) to provide replays within less formal AAR settings in the field. 

5.1.3.15 Player Cache 
The Live Training Transformation (LT2) Player Cache component provides a centralized 

cache for lifeform, platform, equipment, and firing weapon entities within an exercise. 

5.1.3.16 Player Status 
The Player Status LT2 component was developed to display the status of all of the 

entities in the running exercise. 

5.1.3.17 Preferences Editor 
The Preferences Editor provides a GUI to create and edit client application configuration 

settings. These configuration settings (or “preferences”) include the specification of colors, fonts, 
dates, or primitive values (types such as ints, floats, and strings). They may also include domain 
data like location coordinates or CTIA object identifiers. Preferences can be defined at three 
levels: system, team, and user. 

5.1.3.18 Replay 
The Replay LT2 component was developed to replay past tactical events in an exercise to 

LT2 visualization tools. 

5.1.3.19 Rolling Combat Power (RCP) 
The purpose of the Rolling Combat Power (RCP) component is to allow the end user to 

evaluate the combat effectiveness of a unit based upon the status of participants in that unit and 
the unit’s supplies. 

5.1.3.20 Scenario Controller 
The Scenario Controller is a CTIA-compliant component that is responsible for 

commanding and controlling physical range assets during an exercise and that provides all of the 
logic involved in executing an exercise. These assets include, but are not limited to, targets, 
battlefield effect devices (BEDs), and field cameras. 

5.1.3.21 Tactical Net Selector (TNS) 
The Tactical Net Selector (TNS) component provides the Tactical Analysis and Feedback 

(TAF) workstations with the ability to monitor radio traffic, play back recorded radio traffic, and 
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create tags that are stored in the CTIA Database (version 8B). TNS will also provide the TAF 
workstation with the ability to search for recorded clips or tags that are stored in CTIA. 

5.1.3.22 T-RECCS 
The Training Range Exercise Command & Control Suite (T-RECCS) provides two 

executable applications that offer a core set of training functionality via multiple LT2 
components. An Administration application is used for system configuration and range 
maintenance while a Training Range Exercise Command and Control application is used for the 
planning, execution, and recovery of a training exercise. 

5.1.4 Data Collection 
This section covers the CTIA data collection components. 

5.1.4.1 Bookmark Tool 
The Bookmark Tool component is a non-interactive processor developed for recording 

SA data from a live exercise to disk. 

5.1.4.2 CIC Processor 
The Combat Information Center (CIC) Processor is a CTIA-compliant component that 

acts as a gateway between Air Combat Maneuvering System (ACMS) Player Units and CTIA 
Services. 

5.1.4.3 Common Player Unit Controller 
The Common Player Unit Controller provides translation services between CTIA events 

and XML messages defined by the PU-CTIA Common Messages Set Interface Control 
Document (see Asset Browser-ICD). 

5.1.4.4 Contact Report 
The Contact Report component allows a user to create or edit a report that marks the 

time, state, personnel, and equipment involved in an engagement. The report also identifies the 
initiator of the engagement and the missions related to the engagement. 

5.1.4.5 Event Log 
The Event Log is a GUI CTIA-compliant component that displays CTIA events in real 

time. The events that are displayed are configurable via a real-time filtering mechanism within 
the event log. The filtering mechanism allows a user to pick which events the user wishes to see 
and which events the user does not wish to see. 

5.1.4.6 GPS Processor 
The GPS Processor is a CTIA-compliant component that provides one-way 

communication from the Lassen GPS hardware unit to CTIA Services. The GPS Processor reads 
the data from the GPS unit via a serial connection that translates the data into three different 
CTIA messages that consist of the following: Earth Centered Earth Fixed (ECEF) X, Y, Z 
correction coordinates, GPS Version, and GPS Usability (Figure of Merit, or FOM). 
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5.1.4.7 Instrumentation Issue and Recovery (IIR) 
The Instrumentation Issue and Recovery (IIR) component records the issuance of live 

training scoring equipment to live training participants, associating that equipment to objects in a 
live training monitoring system, and recording the recovery of that equipment. 

5.1.4.8 Observation Lite 
The LT2 Observation Lite component is developed for creating, viewing, editing, and 

deleting observations. 

5.1.4.9 Observation Recording Tool (ORT) 
The Observation Recording Tool (ORT) component is developed for creating, viewing, 

and editing observations based on doctrine defined within the Data Collection Plan (DCP) 
Editor. 

5.1.4.10 Obstacle Report 
The Obstacle Report is an integrated component of the Information & Communication 

Technology Services (ICTS) Desktop. The tool is used to create Obstacle entities of various 
types for use in a training exercise. 

5.1.4.11 Player Unit Check Out Tool 
The PU Checkout Tool is a CTIA-compliant component that uses CTIA Services to 

gather information for PUs so that personnel at the Vehicle Install Pad can checkout a PU’s data 
as received by and distributed by CTIA Services. The Vehicle Install Pad is where users 
physically install PU hardware onto vehicles. 

5.1.4.12 Target Event Processor (TEP) 
The Target Event Processor (TEP) acts as a gateway between the Universal Target 

Controller (UTC) and CTIA Services. When commanded, the TEP publishes CTIA Participant 
Events for the commanded targets into the other instances of CTIA Services. These Participant 
Events represent the current state of the targets as related to the CTIA Exercise. 

5.1.4.13 Weather Station Lite (WSL) 
The Weather Station Lite (WSL) is a CTIA-compliant component that acts as a gateway 

between the WMR968 weather station hardware and CTIA. It reads messages from the 
WMR968 and converts the messages into CTIA state messages that are dispatched into CTIA 
Services. 

5.1.5 Battlefield Realism 
This section covers the CTIA battlefield realism components. 

5.1.5.1 Area Weapons Effects Simulation (AWES) 
Area Weapons Effects Simulation (AWES) provides simulation of area weapons effects 

for the Combat Training Center On-Line Information System (CTC-OIS), offering full-spectrum 
operations in a contemporary operational environment. 
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5.1.5.2 Command and Control Suite (CCS) to CTIA Gateway (NTC-specific local system) 
The Security Gateway (SEGW) Tactical Communications Group (TCG) will enable 

CTC-OIS to achieve interoperability with external systems and simulations, such as legacy 
constructive simulations by providing translation services between the CTC-OIS and external 
systems. 

5.1.5.3 Common Player Unit Gateway 
The Common Player Unit Gateway provides an abstraction layer to facilitate common 

Gateway Control (GC) Messages to and from a gateway. The abstraction layer provides a simple 
API that gateways can use to send the most common GC Messages. The functionality provided 
by the Common Player Unit Gateway includes the initial client connection, status requests, 
receiving reports from player units, and sending request to player units. 

5.1.5.4 Common Player Unit GC Message Service 
The Common Player Unit GC Message Service Component is defined by the Common 

Message Set Interface Control Document. This Interface Control Document describes in detail 
the requirements needed to standardize a communications mechanism between instrumented 
player units and CTIA. Data exchanged between gateways and controllers is done via XML. 

5.1.5.5 Common Player Unit JTRS Gateway 
The Joint Tactical Radio System (JTRS) Gateway runs as a console application and 

connects to a JTRS base station. The gateway receives player unit reports from the JTRS base 
station. These reports are converted into GC Messages and sent to the Common MUX. 

5.1.5.6 Common Player Unit Multiplexer (MUX) 
The MUX facilitates the bidirectional messaging of data between gateways and 

controllers. The MUX does not perform any operations on the data; it simply routes the traffic to 
the correct client. 

5.1.5.7 CTIA JLVCDT Adapter 
The Joint Live Virtual Constructive Data Tool (JLVCDT) is an application intended to 

reduce the number and complexity of translators used in LVC training environments through the 
development and employment of an extensible translator framework. The framework provides a 
system and software architecture capable of rapidly integrating, configuring, controlling, and 
monitoring the execution of new and existing modules. 

5.1.5.8 DIS to CTIA Gateway 
The DIS to CTIA Gateway enables CTC-OIS to achieve interoperability with external 

systems and simulations, such as legacy constructive simulations, by providing translation 
services between the CTC-OIS and the DIS network. 
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5.1.5.9 DIS to XML Gateway 
The DIS to XML Gateway enables CTC-OIS to achieve interoperability with external 

systems and simulations, such as legacy constructive simulations by providing translation 
services that convert DIS PDU messages into an XML format. 

5.1.5.10 Fire Finder Radar 
The Fire Finder (FF) Radar feeds a live radar system and is a simulated fly out. The 

software package includes simulation of FF Radars and the ability to interface to FF Radar to 
collect radar settings and simulate the radar returns. 

5.1.5.11 Fire Support Tool 
The Fire Support Tool (FST) is an interactive GUI application provided to support the 

creation, management, and execution of indirect fire missions. It also has the capability of 
defining chemical, biological, radiological, and nuclear areas. 

5.1.5.12 Fire Support Tool Lite 
The FST Lite is an interactive GUI application provided as part of the AWES subsystem 

that provides the users with the capability to easily create indirect fire and improvised explosive 
devices (IEDs) in the CTIA. 

5.1.5.13 Gateway Entity Filter GUI 
The Gateway Entity Filter GUI enables CTC-OIS to achieve interoperability with 

external systems and simulations, such as legacy constructive simulations, by providing a means 
to control entity filtering through the gateways. 

5.1.5.14 XML to CTIA Gateway 
The XML to CTIA Gateway enables CTC-OIS to achieve interoperability with external 

systems and simulations, such as legacy constructive simulations, by providing translation 
services between the XML formatted messages and CTIA message formats. 

5.1.6 Tactical Analysis and Feedback (TAF) 
This section covers the CTIA Tactical Analysis and Feedback (TAF) components. 

5.1.6.1 After Action Review (AAR) 
The AAR Tool enables streamlined creation of AAR materials, including choreography 

for presentations that may occur on a variable number of output devices and to enable more 
versatile presentation capabilities for use in different AAR venues. 

5.1.6.2 Battle Damage Assessment 
The AWES provides simulation of area weapons effects for the CTC-OIS, offering full-

spectrum operations in a contemporary operational environment. 

5.1.6.3 CTC Queries 
CTC queries and views will be stored in the database, as will any supporting procedures. 
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5.1.6.4 Field Camera Controller 
The Field Camera Controller is a CTIA-compliant component that provides the capability 

to command camera mounts to point to specified locations via presets that have been 
programmed into the camera mounts via a Pelco keyboard or optional GUI. This component also 
allows the user to switch between color and forward-looking infrared (FLIR) cameras that are 
mounted on the camera mount, to power the FLIR camera up and down, to command a camera to 
zoom in or out, to command the camera mount to tilt up and down and pan left and right, and to 
open and close the aperture. 

5.1.6.5 Miniature Networked Spectrum Monitoring and Engineering Control System 
The Miniature Networked Spectrum Monitoring and Engineering Control System (Mini-

SMECS) system is a versatile RF spectrum monitoring and recording system. The Mini-SMECS 
system supports a network of ruggedized broadband monitoring points that provide continuous 
monitoring and recording of RF spectrum use over a wide geographical area. 

5.1.6.6 Report Generator Tool 
The Report Generator Tool allows any application that runs within the LT2 GUI 

Framework to generate PowerPoint reports based on events that have occurred in the past. 

5.1.6.7 Vehicle Video Control 
The Vehicle Video Controller is a CTIA-compliant component that provides the 

capability for a user to assign a player unit’s video cameras to one of the available channels. 

5.1.6.8 Video System Suite 
The Video System Suite (VSS) is an LT2 component that enables users to view, record, 

and replay video and audio feeds from range and vehicle video cameras on instrumented, live 
training ranges. 

5.1.7 Infrastructure Tools 
This section covers the CTIA infrastructure components. 

5.1.7.1 CTC COTS Support 
Commercial off-the shelf (COTS) Support allows the COTS products to easily integrate 

into the overall system and uses the functionality of the COTS product to meet system 
requirements. 

5.1.7.2 Data Access Layer 
The Data Access Layer is a CTIA-compliant component that provides a uniform 

framework for accessing range assets and scenario data from the Asset and Data Collection Plan 
(DCP) databases, respectively. 

5.1.7.3 DRTS Parametric Database 
Live fire range training requires the use of parametric data to store target characteristics, 

target exposure times, weapon characteristics, ammunition characteristics, and platform 
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configurations and characteristics. This component defines Oracle database tables that should be 
used by components needing this type of data and that intend to be compatible with the Digital 
Range Training Systems (DRTS) product (aka Instrumented Ranges program). 

5.1.7.4 Entity Type Editor 
The Entity Type Editor provides a user interface to view, create, and update entity types 

for use in CTIA. 

5.1.7.5 Exercise Builder 
The Exercise Builder component provides a GUI interface that allows users to perform 

the CTIA setup tasks prior to running an exercise. The setup tasks include the following: 
establish a new exercise name, create a new training exercise, create an instance of the exercise 
database, initialize the instance as a JBoss™ database (www.jboss.org), and create the SA 
region. 

5.1.7.6 FBCB2 
The Force Battle Command, Brigade-and-Below (FBCB2) component is a CTIA-

compliant component that provides the capability to create, edit, manage, send, and receive a 
subset of the Joint Variable Message Format (JVMF) message set. 

5.1.7.7 JBUS Adapter 
The Joint BUS (JBUS) is an application intended to reduce the number and complexity of 

translators used in LVC training environments through the development and employment of an 
extensible translator framework. 

5.1.7.8 Lite Services Framework 
The CTIA Lite Services Framework (LSF) provides the capability to selectively define 

implementations of CTIA services. 

5.1.7.9 LT2 GUI Framework 
The purpose of the GUI Framework is to establish a library to assist the developer in the 

implementation of LT2 components while retaining a common look and feel to the user. An 
integrated GUI is achieved by using features such as a common desktop to house the tools, drag 
and drop between tools, menu options within one tool that trigger actions in another tool, and a 
common preferences storage system, to name a few. 

5.2 DISTRIBUTED INTERACTIVE SIMULATION (DIS) SUPPORT TOOLS 
The DIS standard itself does not define tools. However, the DIS protocol was designed to 

make common tools easy to develop and use. Being an on-the-wire protocol, DIS Protocol Data 
Units (PDUs) lend themselves to be easily manipulated, stored, filtered, analyzed, and 
visualized. 

The subsections below are the categories (“families”) of tools for DIS, with a short 
description and examples. An example of a DIS configuration is shown in Figure 14. 
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Figure14. Example DIS configuration. 

5.2.1 Middleware 
Middleware is the lowest user-level (as opposed to system-level) software that provides 

access to a network. Since all modern operating systems use a sockets-based network system 
interface, middleware is the layer that interfaces a network service at the Application 
Programming Interface level (the middleware API) to the sockets interface. 

Since DIS is a straightforward protocol, the simplest DIS middleware simply uses the 
actual PDU format as its API, along with functions for initialization, sending, and receiving 
PDUs. That way, a user who is familiar with DIS already understands a large portion of the 
middleware API. DIS middleware may be as simple as providing the sockets interface, byte 
swapping on Little Endian computers, some type of PDU buffering, dead reckoning, and entity 
timeouts. More complex middleware adds PDU filtering, PDU format verification (preventing 
crashes caused by badly formed PDUs) and other error checking, heartbeats and timeouts for all 
objects (entities, radios, emitters, etc.), an object-oriented API, multicast group management, and 
entity and object databases with associated services (e.g., filtering out all PDUs associated with 
an entity that is too far away to be interesting). The most complex middleware can support 
multiple network technologies. Middleware packages that support DIS, HLA RPR FOM, and 
TENA with a single API have been developed. 

Typically, an “adapter” software layer glues the internal simulation model data format to 
the middleware API. The adapter is thus specific to a particular simulation internal design. 

Examples: MaK VR-Link 
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5.2.2 Gateway 
A gateway is a protocol-specific application that performs some type of conversion or 

filtering of PDUs. These often exist at the local area network (LAN)-to-wide area network 
(WAN) boundary for the purposes of converting LAN broadcast addresses into unicast addresses 
that can traverse the WAN. Filtering is done here to reduce the PDU traffic on a WAN with 
limited bandwidth. Other types of PDU translation can be done to link DIS simulation exercises 
that were not originally designed to interoperate with each other, thereby reducing or eliminating 
expensive software changes in the simulators themselves. Gateways may be DIS to DIS 
(relatively easy to implement) or a more complicated DIS to HLA, TENA, etc. 

Examples: MaK Gateway, Redsim DIS PDU Router 

5.2.3 Visualization 
A visualization is a graphical application that attaches to a DIS network for the purposes 

of viewing the events in the exercise in real time or by reading a log file for AAR. Two-
dimensional visualization shows icons on a map view with the ability to pan and zoom. Three-
dimensional (3D) displays add the ability to “tilt” to better visualize events in the vertical axis. It 
also adds 3D models of entities and terrain. A “stealth” is a 3D viewer that can attach its 
eyepoint to a particular entity (or group of entities) and move with it, either from the operator’s 
view inside the vehicle or tethered outside in some way. 

Examples: MaK Stealth and Plan View Display 

5.2.4 Simulation Manager 
A simulation manager is an application that controls a distributed simulation exercise 

using Simulation Management (SIMAN) PDUs. It is used to select a scenario, select a set of 
simulators to participate, start, freeze, and stop the exercise (or individual simulators), and 
display events and error conditions. Often, the Simulation Manager is combined with 
Visualization to form an Instructor Operator Station (IOS), where a training instructor sits to 
conduct an exercise. 

A note of interest: There are IOS applications for large training systems that use only DIS 
PDUs for their network communication. There is no backchannel connection to the individual 
simulators in these systems. This eliminates the need for another network (since the DIS network 
already connects the IOS and all simulators) or for another type of protocol and middleware. 

5.2.5 Logger/Playback 
A logger/playback is an application that connects to a DIS network and logs PDUs during 

the course of a simulation exercise. Loggers are typically as simple as storing every PDU on the 
network in binary form in a log file, along with a timestamp and possible the source address of 
the PDU, thus being very fast and efficient. Playback simply transmits the logged PDUs in order 
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at the right time intervals based on the log timestamps. Playback can be in real time, sped up, 
slowed down, or skipped ahead or back, if necessary. DIS loggers also often have associated log 
reader applications that display the contents of a log file in a human-readable format. 

Examples: MaK Data Logger, Redsim DIS PDU Logger and Recorder 

5.2.6 Analyzer 
An analyzer is an application that processes PDUs to glean information about exercise 

results, error conditions, and network bandwidth use, and to verify the proper operation (dead 
reckoning, heartbeats) and use following DIS rules. Some analysis can be done on live network 
traffic, but it is more common to analyze log files so that the analysis can be repeated or run 
differently, if necessary. 

Example: Redsim DIS Link Monitor 

A general-purpose protocol analyzer (“packet sniffer”) is a useful tool for integrating and 
debugging DIS simulations. By being in the middle of the network transactions, this is invaluable 
for isolating problems to either the sender or receiver. Because DIS specifies the on-the-wire 
protocol, any standard sniffer can at least produce a hexadecimal dump of PDU contents. The 
popular Wireshark (formerly Ethereal) open source analyzer tool can be extended with 
“dissectors” that understand the DIS PDU format and display it in a more human-readable 
format. 

5.2.7 Test Generators 
These applications can generate typical DIS PDU traffic usually for the purposes of 

testing middleware and simulators. The amounts and types of PDUs can be configured, and the 
data content can be controlled to some degree. 

Example: Redsim DIS PDU Generator 

5.2.8 After Action Review (AAR) 
The AAR is a collection of applications that provide a higher level of analysis of 

simulation exercise results. In training exercises, these tools show the student what happened and 
why, helping to complete the learning experience. AAR usually combines logging, playback, and 
visualization, often using the same tools used during simulation run-time for those purposes. 
AAR uses information not only from the DIS log file but also from other sources of recorded 
information such as video and internal simulator data back-channeled to the AAR system. 

5.2.9 Software Development Tools 
These tools are usually tied to specific DIS middleware packages so there are no 

standardized or common tools. Even though the DIS protocol isn’t formally specified, there has 
been some work in defining it in a machine-readable format such as XML. This allows 
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automated code generation of parts of the middleware, such as the byte swapping. Now that DIS 
Version 7 is more extensible, there are plans to develop a formal specification for the records 
that can be created to extend DIS PDUs. However, this work is only conceptual at this point in 
time. 

The DIS Enumerations document describes a large set of enumerations useful in 
distributed simulation. The bulk of the document is long lists of entity and object types. These 
enumerations are also widely used outside the DIS community. There has been a demand for a 
machine-readable version of this document. An XML schema has been developed, along with 
tools to convert the XML version of the enumerations into a format that can be properly 
displayed in Word, Excel, or a web browser, or imported into an SQL database. It is foreseen 
that the next release of the Enumerations document in 2010 will be in XML form and some 
associated tools delivered with it. 

5.3 HIGH LEVEL ARCHITECTURE (HLA) SUPPORT TOOLS 
A number of vendors and distributors provide Run-Time Infrastructure (RTI) 

implementations, and for each, there are support tools that they provide to enhance their product 
offerings. Once again, mention of any tools in this section does not imply endorsement. These 
support tools tend to fall into a common set of categories. The Federation Development and 
Execution Process (FEDEP) [ieee04], which provides a process for development and execution 
of HLA-conformant distributed simulations, includes a listing of common support tools. 

The FEDEP makes reference to the following: 

1. Federation execution control (examples are hlaControl, Virtual Control, Pitch 
Commander, and FedDirector) 

2. Federate execution control 
3. Object model development tools (examples are OMDT Pro and Visual OMT) 

4. Data collection (examples are hlaResults, Pitch Recorder, and MaK Data Logger) 

hlaControl™ provides features that assist the management and control of the federation, 
as listed below: 

• Performance and Control: Provides a single point of monitoring and control of 
distributed HLA federation status and performance metrics. 

• Intelligent Federation Management: Allows the intelligent monitoring of complex 
multi-platform distributed environments. 

• Design for Life Cycle Planning: Support for the HLA FEDEP. 

• Visual Monitoring and Analysis: Provides graphical display that indicates problems 
and status during federation executions. 
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hlaResults™ provides data collection, playback, and analysis, as listed below: 

• Collect and analyze data during execution and define playback tracks to play back any 
specific portion of an exercise. 

• Graphical interface allows the development of data capture and data playback plans. 

• Generation of database schemas for collection. 

• Options to replay specific portions of an exercise. 

Virtual Control™ has been developed specifically to monitor, control, and analyze 
distributed modeling and simulation and live training environments. It provides a floating user 
interface to allow maximum flexibility of enterprise control. It also reduces troubleshooting the 
communication with an infrastructure. 

Pitch Commander™ provides a process for planning and running users’ federation 
execution. Locations and hosts are described together with any important applications such as 
simulators, supporting databases, and visualization systems. The federation can then be described 
and mapped to the corresponding hosts and applications. Pitch Commander™ also allows users 
to auto-discover what hosts and federates are available. 

Pitch Recorder™ (Real HLA 1516 Recording) provides the ability to record, analyze, 
and play back information exchanged in an HLA federation. 

Pitch Recorder™ combined with Fed Director™ provides early development of a 
federate to verify stability and correct behavior of the federate. Early integration developers may 
use the Pitch Recorder™ to record and exchange data between different sites for testing 
purposes. Full integration data can be recorded and inspected to pinpoint problems such as 
incorrect or missing data. Pitch Recorder™ can also be used to monitor the data production and 
to capture data for later reuse for full-scale execution of federations. Pitch Recorder™ can also 
be used to inspect recorded data and to play it back to export it to analysis software for after-
action analysis. Additional capabilities of Pitch Recorder™ are as follows: 

• Capture and retain data after the simulation has been executed. 

• Monitor in real time how data is produced when the simulation is executed. 

• Inspect and visualize the simulation data. 

• Exchange the simulation data into the federation. 

• Exchange the simulation data between sites and organizations. 

• Reuse and refine the simulation data in other applications such as statistical software, 
spreadsheets, and the like. 
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Pitch Visual OMT™ provides the capability for creating and maintaining HLA 1516 
Object models. HLA Object models are necessary to specify the data exchange between 
simulation systems. Pitch Visual OMT™ allows the developer to develop, maintain, and quality-
assure these models. Pitch Visual OMT™ can be used by all federation developers during early 
federation modeling phases as well as when federations are extended. Specifically, Pitch Visual 
OMT™ provides graphical inspection and editing on standard workstations and provides wizards 
for migrating from older standards. The graphical interface, as well as the HTML output, enables 
collaboration and sharing of models. 

MaK Data Logger™ is a system for capturing and replaying simulation data. The Data 
Logger’s GUI enables users to record HLA or DIS messages to a file and replay them to review 
and critique simulation exercises. And with DVR-like features, including pause, fast forward, 
and slow motion (both forward and reverse), users can create more effective demonstrations and 
analysis. Velocities and accelerations are scaled during non-real-time playback to facilitate a 
smooth display in the MaK Stealth, MaK Plan View Display, or other visualization tools. 

MaK Data Logger™ provides the following capabilities: 

• HLA and DIS Data Collection and Playback System 

• Key component of the MaK After Action Review System 

• Record and replay using any HLA FOM 

• Interactive display of simulation timeline 

• Slower or faster than real-time playback 

• Point and range annotations 

• HLA time management support 

• Export of DIS or HLA data to SQL databases 

• Toolkit API for customization 

• Visual editing tools 

• User-configurable filtering 

• Packet histogram display 

• Ability to convert recording logs to text 

OMDT Pro provides the following features: 

• Tree view navigation that allows users to locate information in their object models. 

• Double-click any item in the tree or tab sheet views to access a property sheet with 
detailed information users can either review or edit. 
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• Access the Object Model Template (OMT) tables with the tabbed sheets. 

• Display warning and error messages in an output window to reduce the clutter on the 
workspace. 

• Drag and drop object model items from one model to another. 

• Catch and correct HLA consistency errors at any point in the workflow. 

FedDirector, part of the integrated HLA Lab Works product suite, is designed to take 
advantage of Federation Object Model (FOM) and Management Object Model (MOM) 
information to provide a comprehensive view of the federation execution. FedDirector reads the 
FOM during run-time and allows users to declare interest in object classes. FedDirector provides 
views for managing every federate’s declarations, objects, ownership, and time settings. 
FedDirector provides the following: 

• Dialog views for each HLA service group and MOM class 

• Interface to MOM information 

• Ability to generate and receive FOM interactions and to subscribe to any FOM 
attribute 

• Access to federation management services from a dialog window or a toolbar icon 

• Use of both the MOM and the FOM to collect information to manage a federation 

• Support of all HLA time management schemes 

• Management of users’ federation from creation through resignation 

5.4 TEST AND TRAINING ENABLING ARCHITECTURE (TENA) SUPPORT 
TOOLS 

This section briefly describes the TENA support tools (referred to as the “TENA Tools”) 
that are available. Since TENA has but a single vendor source, the listing of TENA Tools can be 
quite precise. TENA Tools are general-purpose, reusable applications that deal with a wide 
variety of common tasks on ranges. They help the logical range developers and event planners 
manage all aspects of planning, executing, managing, and analyzing a logical range execution, 
and respond directly to one of TENA’s architectural goals, which is to easily manage a logical 
range throughout the range event life cycle. The tool categories are event planning, event 
managing/monitoring, communication management, event analysis, and gateway applications. 
Each of these categories is discussed in the subsections below. 

The content of the descriptions were directly or indirectly gleaned from the TENA Tools 
Requirements Document [tena02]. 
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5.4.1 Event Planning Tool Suite 
Tools in the event planning tool suite assist the logical range developers in creating a 

logical range. The suite includes tools for performing the following functions: 

• Exercise objectives analysis—What are the objectives of a given event, and what 
range resources exist that might match those objectives? 

• Scenario Definition tools to help the user define the participants, instrumentation 
systems, and the sequence of events in an exercise or test event. 

• A set of tools to assist in all of the various plans (in particular, safety plans, test plans, 
and data collection plans) necessary for any range event. 

• A set of tools to assist the user in estimating the cost and maintaining the schedule for 
a range event. 

• The Information Architecture Analysis tool to allow the user to create and simulate a 
system-level view of a logical range, including performance prediction and network 
simulation. This tool allows the logical range designers to perform “what if …” 
analyses on various logical range configurations. 

• The Application Verifier tool to allow the user to test and verify the TENA-
compliance of a given application. 

• The Application Configuration tool to allow a range operator to configure or 
reconfigure a range resource application prior to execution. 

• The Logical Range Check-Out tool to provide the capability to test a logical range (or 
segments thereof) before execution time. 

These tools are built using a common collaboration framework, which helps 
geographically dispersed users work together to create the event in a collaborative fashion. In 
that way, each tool in this suite works seamlessly with all other tools in the suite, as well as with 
the Repository Browser and the Logical Range Object Model tools, which meets TENA’s 
architectural goal for simple, efficient, rapid, logical range development. 

5.4.2 Event Manager/Monitor 
The event manager/monitor tools allow the monitoring and control of range resources 

applications during a logical range execution. The Event Manager and the Event Monitor are 
really the same tool, with the manager version empowered by security policy to alter and control 
range resources (through their Application Management Objects), while the monitor version can 
only passively display logical range information. 

Both tools are capable of monitoring the health of range resource applications, and both 
provide several visual representations of a logical range, including a map display and an 
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information architecture display. Both tools can display to an event conductor the raw values of 
SDO publication state, Messages, or Data Streams. The Event Manager can restart an application 
that has crashed, if necessary. Both the Event Manager and the Event Monitor may participate in 
multiple logical ranges at the same time to achieve a range’s broader goals. 

5.4.3 Communication Manager 
The Communication Manager monitors the physical network and informs the user of any 

problems that occur that might impact the logical range execution. It allows the range operators 
to control network equipment and computers in the logical range using standard (e.g., SNMP) 
protocols. It monitors network traffic and executes a performance prediction simulation to make 
sure that the network is being used optimally. It interacts with the TENA middleware to schedule 
network resources such as multicast groups or raw bandwidth as necessary to support the logical 
range. 

5.4.4 Event Analyzer Tool Suite 
The Event Analyzer tool suite provides all of the analysis capabilities for a logical range. 

In particular, tools in this suite provide: 

• Real-time analysis of important aspects of the logical range, including its operating 
conditions 

• Post-event data reduction and statistical analysis on the collected data 

• Comparative analysis based on predicted results 

Real-time analysis is accomplished differently from post-event analysis. The logical 
range developers must decide, based on their analysis needs and the logical range’s information 
architecture, how real-time analysis should be done. For example, one way to perform real-time 
analysis is for an analysis application to be an active participant in the logical range, subscribing 
to all of the information it needs, storing this information locally in memory or on disk, then 
performing whatever calculations are required to provide real-time or near-real-time analytic 
functionality. Another way to perform real-time analysis is for an analysis application to query 
the Logical Range Data Archive (LRDA) directly for whatever information it requires and not 
directly participate in the logical range execution by subscribing to real-time information. Both 
of these mechanisms have their advantages and disadvantages. The logical range developers 
must decide when they do their logical range information architecture which mechanism is best 
for their particular analysis needs. If the LRDA is distributed, it may not be able to respond in 
real time to certain queries (those that require a distributed join). Indeed, real-time queries of the 
LRDA might inadvertently consume a large amount of bandwidth on the network when such 
bandwidth is required for other, more important, operational information. Any of these 
“expensive” queries will therefore be disallowed by the LRDA during execution. On the other 
hand, an analysis application that actively subscribes to all information in the execution might 
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also overwhelm network capacity. It is therefore imperative that the logical range developers 
have a well-designed analysis plan that takes into account the capabilities of the underlying 
network, the information requirements of the analysis applications, and the design of their LRDA 
before execution. 

There may be many types of analysis applications, performing many different functions. 
These functions might include data mining, pattern recognition, visualization, and statistical 
analysis. 

5.4.5 TENA/Non-TENA Gateway Applications 
Gateway applications allow the integration of TENA range resource applications with 

non-TENA resources. Because TENA must interact with many types of non-TENA systems and 
architectures, it is important that a generalized gateway design be described. Such a design is 
presented in Figure 15, which shows the translation capabilities, based on pre-defined rules, that 
allow objects in the Logical Range Object Model (LROM) to be translated into other protocols. 

 
Figure 15. Generic TENA gateway design. 

The essence of the design is quite simple. Gateways are applications that communicate 
with both a TENA logical range (using the TENA middleware) and another set of applications 
using some other protocol. The component labeled “Other Middleware” represents any of the 
myriad libraries or software infrastructures that are used to communicate in these other 
architectures. For HLA simulations, the “Other Middleware” represents the HLA RTI. For 
legacy simulations that adhere to the DIS standard, the “Other Middleware” represents DIS 
protocol libraries. For range instrumentation, tactical interfaces, or range control systems, the 
“Other Middleware” might be a common class library, or subroutine library, or custom software 
that allows an application to communicate in one of these communities. 

Information from each of these non-TENA architectures is encoded in the gateway as a 
software object, based on the particular format of the data being communicated. These objects 
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are the “Other Objects” in the figure. If the other architecture naturally produces software 
objects, these will be used directly, but it is more likely that the other architectures produce data 
records or PDUs. In this case, the gateway designers need to create a set of software classes that 
model the information contained in the PDUs. 

The translator is a specific piece of custom software that maps the information contained 
in TENA SDOs, messages, and data streams into the “other objects” of the other protocol. This 
translator consists of custom-built software; it is one of a number of reusable components or is 
auto-code-generated based on some higher-level translation rules. Using this tool, one could 
construct a system with a GUI that allowed the user to “draw” the translation rules from a palette 
of functions and subsequently have the tool auto-generate the gateway software for the particular 
LROM and other protocols. 

The gateway application software also provides some sophisticated functionality for 
intelligently subscribing to only that information needed by that particular gateway. In larger 
systems, gateways might have to be federated with one another, working together to balance 
processing or network load. Managing a series of federated gateways usually becomes a complex 
task. In this case, using the Gateway Manager addresses handling these management functions. 
Such a design is illustrated in Figure 16. The Gateway Manager communicates with and controls 
the gateways using their built-in Application Management Objects. The gateways inform the 
Gateway Manager of their load, latencies, and throughputs, and the Gateway Manager hosts the 
algorithms that decide how to better balance the load or improve the system’s performance. 
Figure 16 only illustrates two gateways working together, but in principle there is no limit to the 
number of gateways that could be federated if necessary. 

 

Figure 16. Federating gateways to balance resources using the Federated 
Gateway Manager tool. 
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5.4.5.1 Integrating Ranges and Simulations: TENA and the HLA4

The DoD HLA for M&S has been designated the standard architecture for M&S 
throughout the DoD. The HLA provides a common mechanism for interoperability and reuse of 
simulations. It is based on the premise that no single simulation can satisfy all requirements at all 
times. An individual simulation or set of simulations developed for one purpose can be applied to 
another purpose under the concept of an HLA “federation” that calls for a composable set of 
interacting simulations. The intent of the HLA is to provide the structure to support 
interoperability and reuse of different simulations, ultimately reducing the cost and time required 
to create a synthetic operating environment for a new purpose. 

 

The HLA requires simulations to interact with other simulations via the RTI according to 
its standard interface specification. The HLA does not specify the internal structure of 
simulations; it just defines RTI services that allow simulations to form federations and exchange 
information with one another. The HLA requires federations to use an object model describing 
the information exchanged by the simulations across a given federation but does not specify what 
that object model must be. The HLA Object Model Template (OMT) stipulates the kind of 
information that should be included in an object model, but it does not define the object classes 
(e.g., vehicles, unit types) that appear in the model. The OMT performs the same function in the 
HLA as the TENA meta-model does in TENA. 

5.4.5.2 HLA Gateway 
The TENA-HLA gateway provides the capability for a TENA simulation to be 

interoperable with other architectures. Since the range community adopted the TENA 
middleware as the standard high-performance communication system for distributing the TENA 
Object Model, a mechanism was needed to bridge between the TENA middleware and the HLA 
RTI so that TENA Range Resources could interoperate with HLA simulations. The bridging 
itself was accomplished as illustrated in Figure 17. 

 

Figure 17. The TENA-HLA gateway. 
                                                           

4Parts of this section have been paraphrased from the FI 2010 JORD, pp. 43 and 44. 
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There are two issues that the gateway resolved to address semantic interoperability 
between HLA federations and TENA logical ranges. These issues were as follows: 

• Different Meta-models—The HLA meta-model is quite a bit more restrictive than the 
TENA meta-model, which presents a number of problems for a TENA-HLA gateway 
designer. First, translating the more complex TENA LROM class definitions into the 
simpler HLA classes will be difficult because not all features in the TENA meta-
model can be represented properly as HLA objects. Since the HLA OMT does not 
support composition, translating complex TENA composition hierarchies into a 
sensible HLA FOM will be difficult. Brute force approaches that “flatten out” the 
containment hierarchy on the HLA side have been prototyped. Second, the HLA OMT 
is oriented around items called “attributes” organized into collections called “classes.” 
The natural tendency to equate HLA “classes” with TENA SDO class definitions must 
be avoided, as these two constructs behave very differently during run-time. 

• Time Management—The HLA provides services to manage the ordering of events in 
a distributed simulation. For historical reasons, this ability to globally order events is 
called “time management,” since the key to the global order is the simulation time. 
Time-managed HLA federations guarantee that each simulation receives events, 
including messages from other simulations, in proper order. TENA, which runs in real 
time, does not guarantee the global ordering of events. Each application in a TENA 
logical range receives SDO updates and messages as they come in, to minimize 
latency and maximize execution efficiency. It is possible, therefore, for TENA 
applications to receive events out of order. Integrating simulations using HLA time 
management with range assets running in real time is a major technical challenge, one 
for which additional prototyping and research will be required. 

5.4.5.3 Other Gateways 
Two other categories of gateways are important: 

• C4ISR System Gateways—C4ISR systems are a special class of systems that are 
designed to bring information superiority to the warfighter. C4ISR systems are just 
beginning to be built to a set of common architectures. There are many C4ISR systems 
being used today that need to be integrated into logical ranges, e.g., Global Command 
and Control System (GCCS), Cooperative Engagement Capability (CEC), and 
Advanced Field Artillery Data System (AFATDS). Like existing range 
instrumentation systems, many of these C4ISR systems use message-based 
communication mechanisms, with insufficient standardization of message types and 
contents to provide anything more than syntactic interoperability. 

• Gateways to Entities on the Range—The term “entity” refers to systems (such as 
ships, vehicles, aircraft, etc.) that are on the range for testing or training purposes. 
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They may be a system-under-test or they may be equipment used by the training 
audience. To the extent that these systems use C4ISR equipment, communication 
between them and a TENA logical range would occur via one of the many C4ISR 
gateways. But in most cases separate gateways to tactical interfaces such as JTIDS, 
Link-16, TADIL-J, Link-11, etc., will be necessary. As with C4ISR systems and 
simulations, interoperability between TENA and range entities will be at the syntactic 
level until all of the issues related to translating their protocols are well understood 
and have been tested thoroughly. 



Live-Virtual-Constructive Architecture Roadmap Implementation–Legacy Architectures Reference Model 
 

 

 
 

Page 66 
 

6 SUMMARY  

The LVCAR-CT has established an independent view of the current architectures. The 
next step is to determine what actions lead to convergence. The vision is that in 2015 new 
versions of CTIA, DIS, HLA, and TENA will come out that will incorporate the results of the 
Convergence Initiative. These new versions will continue to provide their users with services that 
maintain the value of previous investments in LVC software applications. However, as a result of 
collaboration between architecture engineering teams and limited additional changes, the new 
versions can much more easily and effectively be bridged. 

The LVCAR-CT work does not stand alone. In particular, many preconditions, which are 
being pursued as part of related tasks, are necessary to achieve this vision. The LVCAR-CT 
assumes the following efforts will be successfully accomplished on schedule, and actively 
collaborates with the teams involved to encourage such success: 

1. DSEEP defines common processes for distributed simulation development, widely 
disseminates them, and enables work on process overlays for multi-architecture events. 

2. The Joint Common Object Model (JCOM) produces an architecture-independent data-
exchange model representation compatible with all architectures. 

3. The LVC Common Capabilities activity defines a reuse solution (registry, repository, 
etc.) compatible with all the architectures. 

4. The LVC Bridges and Gateways activity identifies mechanisms to convert between the 
legacy versions of the architectures. 

5. Management can effectively incentivize action by any of the architecture proponents. 
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APPENDIX A.  ABBREVIATONS AND ACRONYMS 
 

2D two-dimensional 
3D three-dimensional 
AAC Alarms and Alerts Component 
AAR after action review 
ACMS Air Combat Mission System 
ADRM Asset Database Resource Manager 
AF Acquiring Federate 
AFATDS Advanced Field Artillery Tactical Data System (U.S. Army) 
AMT Architecture Management Team 
API Application Programmer Interface 
ARM Architecture Reference Model 
ASTMP Army Science and Technology Master Plan 
AWES Area Weapons Effects Simulation 
BED battlefield effect device 
C4ISR command, control, communications, computers, intelligence, surveillance, 

and reconnaissance 
CAS Close Air Support 
CAST Close Air Support Mission Editor Tool 
CCS Command and Control Suite 
CDR Common Data Representation 
CEC Cooperative Engagement Capability 
CIC Combat Information Center 
CORBA Common Object Request Broker Architecture 
COTS commercial off-the-shelf 
CPD Capability Production Document 
CTC Combat Training Center 
CTC-OIS Combat Training Center Objective Instrumentation System 
CTIA Common Training Instrumentation Architecture 
DCP Data Collection Plan 
DDM Data Distribution Management 
DDR&E Director, Defense Research and Engineering 
DF Divesting Federate 
DGPS digital GPS 
DIS Distributed Interactive Simulation 
DM Declaration Management 
DoD United States Department of Defense 
DRTS Digital Range Training Systems 
DSEEP Distributed Simulation Engineering and Execution Process 
DTM Digital Tactical Monitoring 
ECEF Earth Centered Earth Fixed 
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EGP Event Generator Processor 
EPG Entity Property Grid 
ERC Exercise 
ESPDU entity state PDU 
EXCON Exercise Controller 
FBCB2 Force Battle Command, Brigade-and-Below 
FDD FOM Document Data 
FEDEP Federation Development and Execution Process 
FF Fire Finder 
FLIR forward-looking infrared 
FOM Federation Object Model; figure of merit 
FQR Flush Queue Request (HLA) 
FST Fire Support Tool 
GALT Greatest Available Logical Time 
GC Gateway Control 
GCCS Global Command and Control System 
GOTS government off-the-shelf 
GPS Global Positioning System 
GUI graphical user interface 
HITS Homestation Instrumentation Training System 
HLA High Level Architecture 
ICTS Information and Communication Technology Services 
IDL Interface Definition Language 
IED improvised explosive device 
IEEE Institute of Electrical & Electronics Engineers 
IIR Instrumentation Issue and Recovery 
IO Information Operations 
IOS Instructor Operator Station 
ISC Instrumentation Status and Control 
JBUS Joint BUS 
JCOM Joint Common Object Model 
JLVCDT Joint Live Virtual Constructive Data Tool 
JTRS Joint Tactical Radio System 
JVMF Joint Variable Message Format 
LAN local area network 
LITS Least Incoming Time Stamp 
LRDA Logical Range Data Archive 
LROM Logical Range Object Model 
LSF Lite Services Framework 
LT2-FTS Live Training Transformation – Family of Training Systems 
LVC live, virtual, and constructive 
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LVCAR Live-Virtual-Constructive Architecture Roadmap 
LVCAR-CT LVCAR Convergence Team 
MGRS Military Grid Reference System 
Mini-SMECS Miniature Networked Spectrum Monitoring and Engineering Control 

System 
MOM Management Object Model 
MOUT Military Operations in Urban Terrain 
M&S Modeling and Simulation 
M&S CO M&S Coordination Office 
MUX Multiplexer 
NMR Next Message Request (HLA) 
NMRA Next Message Request Available (HLA) 
OC observer/controller 
OIS On-Line Information System 
OMT Object Model Template 
OneTESS On Tactical Engagement Simulation System 
OO object-oriented 
ORB Object Request Broker 
ORD Operational Requirements Document 
ORT Observation Recording Tool 
OS Operating System 
PDT Participant Definition Tool 
PDU Protocol Data Unit 
PEO STRI U.S. Army Program Executive Office for Simulation. Training, and 

Instrumentation 
PM TRADE Project Manager Training Devices 
PnP plug and play 
PU Player Unit 
RCP Rolling Combat Power 
RO Receive Order 
ROC Range Operations Center 
RMI Remote Method Invocation 
RPR Real-time Platform Reference 
RTI Run-Time Infrastructure 
QoS quality of service 
SA situational awareness 
SDO Stateful Distributed Object 
SEGW Security Gateway 
SIMAN Simulation Management 
SISO Simulation Interoperability Standards Organization 
SME subject matter expert 
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SNMP Simple Network Management Protocol 
SOA service-oriented architecture 
STM System Technical Monitoring 
SysCon System Control (CTC) 
SYSCON System Control 
TAF Tactical Analysis and Feedback 
TAR Time Advance Request (HLA) 
TARA Time Advance Request Available (HLA) 
TC tracking control 
TCG Tactical Communications Group  
TCO Tactical Control Officer 
TCP/IP Transmission Control Protocol/Internet Protocol 
TCR Transfer Control Request 
TENA Test and Training Enabling Architecture 
TEP Target Event Processor 
TESS Tactical Engagement Simulation System 
THP Take Home Package 
TNS Tactical Net Selector 
T-RECCS Training Range Exercise Command & Control Suite 
TSO Time Stamped Order 
UDP User Datagram Protocol 
UDP/IP User Datagram Protocol/Internet Protocol 
UTC Universal Target Controller 
VSS Video System Suite 
WAN wide area network 
WSL Weather Station Lite 
XML Extensible Markup Language 
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