
This document corresponds to the web version of the VV&A RPG Reference Document of the same name 
and date.  It has been modified for printing. 

 

V&V Techniques 
 

RPG Reference Document 
 

8/15/011 
 
Table of Contents 
 
V&V Technique Taxonomy   1 

Informal V&V Techniques   3 

Audit   3 

Desk Checking / Self-inspection   3 

Face Validation   4 

Inspection   4 

Review   5 

Turing Test   6 

Walkthroughs   6 

Inspection vs Walkthrough vs Review   6 

Static V&V Techniques   7 

Cause-Effect Graphing   7 

Control Analysis   8 

Data Analysis   9 

Fault/Failure Analysis   9 

Interface Analysis   9 

Semantic Analysis 10 

Structural Analysis 10 

Symbolic Evaluation 11 

Syntax Analysis 12 

Traceability Assessment 12 

Dynamic V&V Techniques 12 

Acceptance Testing 13 

Alpha Testing 13 

Assertion Checking 13 

Beta Testing 14 

                                                           
1 This document replaces the 11/30/00 version.  It contains formatting and minor editorial changes.   



This document corresponds to the web version of the VV&A RPG Reference Document of the same name 
and date.  It has been modified for printing. 

Table of Contents (continued) 
 
Dynamic Testing Techniques (continued 

Bottom-Up Testing 14 

Comparison Testing 15 

Compliance Testing 15 

Debugging 16 

Execution Testing 16 

Fault/Failure Insertion Testing 17 

Field Testing 17 

Functional Testing 17 

Graphical Comparison 18 

Interface Testing 18 

Object-Flow Testing 20 

Partition Testing 20 

Predictive Validation 20 

Product Testing 21 

Regression Testing 21 

Sensitivity Analysis 21 

Special Input Testing 21 

Statistical Techniques 23 

Structural Testing 25 

Submodel/Module Testing 27 

Symbolic Debugging 27 

Top-Down Testing 27 

Visualization/Animation 28 

Formal Techniques 28 

Guidelines for Selecting V&V Techniques 30 

References 36 

RPG References in this Document 41 

Additional References 41 

Appendix A:  Validation Procedure Using Simultaneous Confidence Intervals    A-1 

Appendix B:  Selecting V&V Techniques for Defect Detection    B-1 

 



V&V Techniques 8/15/01 
RPG Reference Document  1 

 

 

V&V Technique Taxonomy 
 
This document describes over seventy-five V&V techniques and eighteen statistical 
techniques that can be used for model validation.  Most of these techniques are derived 
from software engineering; the remaining are specific to the modeling and simulation 
(M&S) field.  The software V&V techniques applicable to M&S V&V are presented in 
terms understandable by an M&S technical person.  Some software V&V techniques 
have been modified for use in M&S V&V.  The term testing is used frequently when 
referring to the implementation of these techniques because V&V involves the testing of 
the model or simulation to assess its credibility.   
 
The V&V techniques discussed in this document are separated into four categories:  
informal, static, dynamic, and formal.   
 

• Informal V&V techniques are among the most commonly used.  They are 
called informal because their tools and approaches rely heavily on human 
reasoning and subjectivity without stringent mathematical formalism.  

• Static V&V techniques assess the accuracy of the static model design and 
source code.  Static techniques do not require machine execution of the model, 
but mental execution can be used.  The techniques are very popular and widely 
used, and many automated tools are available to assist in the V&V process.  
Static techniques can reveal a variety of information about the structure of the 
model, the modeling techniques used, data and control flow within the model, 
and syntactical accuracy (Whitner and Balci, 1989). 

• Dynamic V&V techniques require model execution; they evaluate the model 
based on its execution behavior.  Most dynamic V&V techniques require model 
instrumentation, the insertion of additional code (probes or stubs) into the 
executable model to collect information about model behavior during execution.  
Dynamic V&V techniques usually are applied in three steps:  

− executable model is instrumented 

− instrumented model is executed 

− model output is analyzed and dynamic model behavior is evaluated 
• Formal V&V techniques (or formal methods) are based on formal 

mathematical proofs or correctness and are the most thorough means of model 
V&V.  The successful application of formal methods requires the model 
development process to be well defined and structured.  Formal methods should 
be applied early in the model development process to achieve maximum 
benefit.  Because formal techniques require significant effort they are best 
applied to complex problems, which cannot be handled by simpler methods.   

 
Although these categories share many of the same characteristics and individual V&V 
techniques can overlap from one to another, the complexity and the mathematical and 
logical formalism involved increase as the category becomes more formal.  
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The taxonomy table below lists all the techniques discussed.  They are grouped 
according to the categories described above and hot links are provided so the reader 
can select by either category or technique.  The categories are also identified by color-
coding. 
 
 

Verification and Validation Technique Taxonomy 
Informal Techniques 

audit desk check face validation 

review Turing test walkthrough 
inspection 

Static Techniques 
control analyses data analyses 

calling 
structure control flowcause-effect graphing 
concurrent 
process 

state 
transition 

data 
dependency data flow 

fault/failure analysis

interface analyses semantic analysis structural analysis symbolic evaluation
model 

interface 
user 

interface syntax analysis  traceability assessment 
Dynamic Techniques 

acceptance test alpha test assertion check beta test 
compliance tests 

authorization security bottom-up test comparison test 
performance standards

debugging 

execution tests 
monitor profile trace 

fault / failure insertion 
test field test functional test  

(Black Box test) 

interface tests graphical comparison 
data model user 

object-flow test partition test 

predictive validation product test regression test sensitivity analysis

special input tests structural tests  
(White Box tests) 

statistical 
techniques 

boundary value real-time input branch loop 
equivalence partitioning self-driven input condition path 
extreme input stress 
invalid input trace-driven input data flow statement 

submodel / module 
test 

symbolic debugging top-down test visualization / animation 
Formal Techniques 

induction inference logical deduction inductive assertion

lambda calculus predicate calculus predicate 
transformation 

proof of 
correctness 

 
 
 



V&V Techniques 8/15/01 
RPG Reference Document  3 

 

Informal V&V Techniques 
 
Informal techniques are among the most commonly used.  They are called informal 
because they rely heavily on human reasoning and subjectivity without stringent 
mathematical formalism.  The informal label should not imply, however, a lack of 
structure or formal guidelines in their use.  In fact, these techniques should be applied 
using well-structured approaches under formal guidelines.  They can be very effective if 
employed properly. 
 
Audit 
 
An audit is a verification technique performed throughout the development life cycle of a 
new model or simulation or during modification made to legacy models and simulations.  
An audit is a staff function that serves as the "eyes and ears of management" [Perry, 
1995, p. 26].  An audit is undertaken to assess how adequately a model or simulation is 
used with respect to established plans, policies, procedures, standards, and guidelines.  
Auditing is carried out by holding meetings and conducting observations and 
examinations [Hollocker, 1987].  The process of documenting and retaining sufficient 
evidence about the substantiation of accuracy is called an audit trail [Perry, 1995].  
Auditing can be used to establish traceability within the simulation.  When an error is 
identified, it should be traceable to its source via its audit trail. 
 
Desk Checking / Self-inspection 
 
Desk checking, or self-inspection, is an intense examination of a working product or 
document to ensure its correctness, completeness, consistency, and clarity.  It is 
particularly useful during requirements verification, design verification, and code 
verification.  Desk checking can involve a number of different tasks, such as those 
listed in the table below [Beizer, 1990]. 
 

Typical Desk Checking Activities 

• syntax review 
• cross-reference examination 
• convention violation assessment 
• detailed comparison to specifications 
• code reading 
• control flowgraph analysis 
• path sensitizing  

 
To be effective, desk checking should be conducted carefully and thoroughly, 
preferably by someone not involved in the actual development of the product or 
document, because it is usually difficult to see one’s own errors [Adrion et al., 1982].  
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Face Validation 
 
The project team members, potential users of the model, and subject matter experts 
(SMEs) review simulation output (e.g., numerical results, animations, etc.) for 
reasonableness.  They use their estimates and intuition to compare model and system 
behaviors subjectively under identical input conditions and judge whether the model 
and its results are reasonable [Hermann, 1967]. 
 

Informal Techniques Example 1:   

Face validation was used in the development of a simulation of the U.S. Air Force 
(AF) manpower and personnel system to ensure it provided an adequate 
representation.  The simulation was designed to provide AF policy analysts with a 
system-wide view of the effects of various proposed personnel policies.  The 
simulation was executed under the baseline personnel policy and results shown to 
AF analysts and decision-makers who subsequently identified some discrepancies 
between the simulation results and perceived system behavior.  Corrections were 
made and additional face validation evaluations were conducted until the simulation 
appeared to closely approximate current AF policy.  The face validation exercise 
both demonstrated the validity of the simulation and improved its perceived 
credibility [Morrison] 

 
Face validation is regularly cited in V&V efforts within the Department of Defense (DoD) 
M&S community.  However, the term is commonly misused as a more general term and 
misapplied to other techniques involving visual reviews (e.g., inspection, desk check, 
review).  Face validation is useful mostly as a preliminary approach to validation in the 
early stages of development.  When a model is not mature or lacks a well-documented 
VV&A history, additional validation techniques may be required. 
 
Inspection 
 
Inspection is normally performed by a team that examines the product of a particular 
simulation development phase (e.g., M&S requirements definition, conceptual model 
development, M&S design).  A team normally consists of four or five members, 
including a moderator or leader, a recorder, a reader (i.e., a representative of the 
Developer) who presents the material being inspected, the V&V Agent; and one or 
more appropriate subject matter experts (SMEs).  Normally, an inspection consists of 
five phases: overview, preparation, inspection, rework, and follow-up [Schach, 1996].    
 

Informal Techniques Example 2: 

The team inspecting a simulation design might include a moderator; a recorder; a 
reader from the simulation design team who will explain the design process and 
answer questions about the design; a representative of the Developer who will be 
translating the design into an executable form; SMEs familiar with the requirements 
of the application, and the V&V Agent. 

• Overview -- The simulation design team prepares a synopsis of the design.  This 
and related documentation (e.g., problem definition and objectives, M&S 
requirements, inspection agenda) is distributed to all members of the inspection 
team.  

http://www.msiac.dmso.mil/vva/Special_topics/SME/default.htm
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• Preparation --The inspection team members individually review all the 
documentation provided.  The success of the inspection rests heavily on the 
conscientiousness of the team members in their preparation.  

• Inspection -- The moderator plans and chairs the inspection meeting.  The reader 
presents the product and leads the team through the inspection process.  The 
inspection team can be aided during the faultfinding process by a checklist of 
queries.  The objective is to identify problems, not to correct them.  At the end of 
the inspection the recorder prepares a report of the problems detected and 
submits it to the design team.  

• Rework --The design team addresses each problem identified in the report, 
documenting all responses and corrections.  

• Follow-up -- The moderator ensures that all faults and problems have been 
resolved satisfactorily.  All changes should be examined carefully to ensure that no 
new problems have been introduced as a result of a correction. 

 
Review 
 
A review is intended to evaluate the simulation in light of development standards, 
guidelines, and specifications and to provide management, such as the User or M&S 
PM, with evidence that the simulation development process is being carried out 
according to the stated objectives.  A review is similar to an inspection or walkthrough, 
except that the review team also includes management.  As such, it is considered a 
higher-level technique than inspection or walkthrough. 
 
A review team is generally comprised of management-level representatives of the User 
and M&S PM.  Review agendas should focus less on technical issues and more on 
oversight than an inspection.  The purpose is to evaluate the model or simulation 
relative to specifications and standards, recording defects and deficiencies.  The V&V 
Agent should gather and distribute the documentation to all team members for 
examination before the review.  The V&V Agent should also prepare a set of indicators 
to measure such as those listed in the table below.   
 

Review Indicators 

• appropriateness of the problem definition and 
M&S requirements 

• adequacy of all underlying assumptions 
• adherence to standards 
• modeling methodology 
• quality of simulation representations 
• model structure 
• model consistency 
• model completeness 
• documentation 

 
The V&V Agent may also prepare a checklist to help the team focus on the key points.  
The result of the review should be a document recording the events of the meeting, 
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deficiencies identified, and review team recommendations.  Appropriate actions should 
then be taken to correct any deficiencies and address all recommendations.  
 
Turing Test 
 
The Turing test is used to verify the accuracy of a simulation by focusing on differences 
between the system being simulated and the simulation of that system.  System experts 
are presented with two blind sets of output data, one obtained from the model 
representing the system and one from the system, created under the same input 
conditions and are asked to differentiate between the two.  If they cannot differentiate 
between the two, confidence in the model’s validity is increased [Schruben, 1980; 
Turing, 1963; Van Horn, 1971].  If they can differentiate between them, they are asked 
to describe the differences.  Their responses provide valuable feedback regarding the 
accuracy and appropriateness of the system representation.  
 
Walkthroughs 
 
The main thrust of the walkthrough is to detect and document faults; it is not a 
performance appraisal of the Developer.  This point must be made to everyone involved 
so that full cooperation is achieved in discovering errors.  A typical structured 
walkthrough team consists of  
 

• Coordinator, often the V&V Agent, who organizes, moderates, and follows up 
the walkthrough activities 

• Presenter, usually the Developer 
• Recorder 
• Maintenance oracle, who focuses on long-term implications 
• Standards bearer, who assesses adherence to standards 
• Accreditation Agent, who reflects the needs and concerns of the User 
• Additional reviewers such as the M&S PM and auditors  

 
Except for the Developer, none of the team members should be involved directly in the 
development effort.  [Adrion et al., 1982; Deutsch, 1982; Myers, 1978, 1979; Yourdon, 
1985]. 
 
Inspection vs Walkthrough vs Review 
 
Inspections differ significantly from walkthroughs.  An inspection is a five-step, 
formalized process.  The inspection team uses the checklist approach for uncovering 
errors.  A walkthrough is less formal, has fewer steps, and does not use a checklist to 
guide or a written report to document the team’s work.  Although the inspection process 
takes much longer than a walkthrough, the extra time is justified because an inspection 
is extremely effective for detecting faults early in the development process when they 



V&V Techniques 8/15/01 
RPG Reference Document  7 

 

are easiest and least costly to correct [Ackerman et al., 1983; Beizer, 1990; Dobbins, 
1987; Knight and Myers, 1993; Perry, 1995; Schach, 1996]. 
 
Inspections and walkthroughs concentrate on assessing correctness.  Reviews seek to 
ascertain that tolerable levels of quality are being attained.  The review team is more 
concerned with design deficiencies and deviations from the conceptual model and M&S 
requirements than it is with the intricate line-by-line details of the implementation.  The 
focus of a review is not on discovering technical flaws but on ensuring that the design 
and development fully and accurately address the needs of the application.  For this 
reason, the review process is effective early on during requirements verification and 
conceptual model validation.  [Hollocker, 1987; Perry, 1995; Sommerville, 1996; 
Whitner and Balci, 1989]. 
 

Static V&V Techniques 
 
Static V&V techniques assess the accuracy of the static model design and source code.  
They can reveal a variety of information about the structure of the model, modeling 
techniques used, data and control flows within the model, and syntactical accuracy 
[Whitner and Balci, 1989].  Static techniques do not require machine execution of the 
model but mental execution or rehearsal is often involved.  Static V&V techniques are 
widely used and many automated tools are available.  For example, the simulation 
language compiler is itself a static V&V tool.  
 
Cause-Effect Graphing 
 
Cause-effect graphing addresses the question of what causes what in the model 
representation.  Causes and effects are first identified in the system being modeled and 
then their representations are examined in the model specification.  
 

Static Techniques Example 1: 

In the simulation of a traffic intersection, the following causes and effects may be 
identified:  

• the change of a light to red immediately causes the vehicles in the traffic lane to 
stop 

• an increase in the duration of a green light causes a decrease in the average 
waiting time of vehicles in the traffic lane 

• an increase in the arrival rate of vehicles causes an increase in the average 
number of vehicles at the intersection 

 
As many causes and effects as possible should be listed.  The semantics are 
expressed in a cause-effect graph that is annotated to describe special conditions or 
impossible situations.  Once the cause-effect graph has been constructed, a decision 
table is created by tracing back through the graph to determine combinations of causes 
that result in each effect.  The decision table then is converted into test cases with 
which the model is tested [Myers, 1979; Pressman, 1996; Whitner and Balci, 1989]. 
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Control Analysis 
 
Control analysis techniques include calling structure analysis, concurrent process 
analysis, control flow analysis, and state transition analysis. 
 
Calling structure analysis is used to assess model accuracy by identifying who calls 
whom and who is called by whom.  The who can be a procedure, subroutine, 
function, method, or a submodel within a model.  
 

Static Techniques Example 2: 
Inaccuracies caused by message passing (e.g., sending a message to a nonexistent 
object) in an object-oriented model can be revealed by analyzing the specific 
messages that invoke an action and the actions that messages invoke [Miller et al., 
1995]. 

 
Concurrent process analysis is especially useful for parallel [Fujimoto, 1990, 1993; 
Page and Nance, 1994] and distributed simulations.  
 

• a simulation executing on a single computer with a single processor (CPU) is 
referred to as a serial (sequential) simulation 

• a simulation executing on a single computer with multiple processors is a 
parallel simulation 

• a simulation executed on multiple single-processor computers is said to be a 
distributed simulation 

 
Model accuracy is assessed by analyzing the overlap or simultaneous execution of 
actions executed in parallel or across distributed simulations.  Such analysis can reveal 
synchronization and time management problems [Rattray, 1990]. 
 
Control flow analysis examines sequences of control transfers and is useful for 
identifying incorrect or inefficient constructs within model representation.  A graph of the 
model is constructed in which conditional branches and model junctions are 
represented by nodes and model segments between such nodes are represented by 
links [Beizer, 1990].  A node of the model graph usually represents a logical junction 
where the flow of control changes, whereas an edge represents the junction that 
assumes control.  
 
State transition analysis identifies the finite number of states through which the model 
execution passes.  A state transition diagram is used to show how the model transitions 
from one state to another.  Model accuracy is assessed by analyzing the conditions 
under which a state change occurs.  This technique is especially effective for models 
and simulations created under activity scanning, three-phase, and process interaction 
conceptual frameworks [Balci, 1988]. 
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Data Analysis 
 
Data analysis techniques are used in V&V activities to ensure that  
 

• proper operations are applied to data objects (e.g., data structures, event lists, 
linked lists) 

• data used by the model are properly defined 
• defined data are properly used [Perry, 1995] 

 
Two basic data analysis techniques are data dependency analysis and data flow 
analysis.  
 
Data dependency analysis determines which variables depend on other variables 
[Dunn, 1984].  For parallel and distributed simulations, the data dependency knowledge 
is critical for assessing the accuracy of synchronization across multiple processors. 
 
Data flow analysis assesses model accuracy with respect to the use of model 
variables.  This assessment is classified according to the definition, referencing, and 
unreferencing of variables [Adrion et al., 1982], i.e., when variable space is allocated, 
accessed, and deallocated.  A data flowgraph is constructed to aid in the data flow 
analysis.  The nodes of the graph represent statements and corresponding variables.  
The edges represent control flow. 
 
Data flow analysis can be used to detect undefined or unreferenced variables (much as 
in static analysis) and, when aided by model instrumentation, can track minimum and 
maximum variable values, data dependencies, and data transformations during model 
execution.  It is also useful in detecting inconsistencies in data structure declaration and 
improper linkages among submodels or federates [Allen and Cocke, 1976; Whitner and 
Balci, 1989]. 
 
Fault/Failure Analysis 
 
Fault (i.e., incorrect model component) and failure (i.e., incorrect behavior of a model 
component) analysis uses model input-output transformation descriptions to identify 
how the model logically might fail.  The model design specification is examined to 
determine if any failures logically could occur, in what context, and under what 
conditions.  Such examinations often lead to identification of model defects [Miller et al., 
1995]. 
 
Interface Analysis 
 
Interface analysis techniques are especially useful for verification and validation of 
interactive and distributed simulations.  Two basic techniques are model interface 
analysis and user interface analysis.  
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• Model interface analysis examines submodel-to-submodel interfaces within a 
model, or federate-to-federate interfaces within a federation, and determines if 
the interface structure and behavior are sufficiently accurate.  

• User interface analysis examines the user-model interface and determines if it 
is human engineered to prevent errors during the user’s interactions with the 
model.  It also assesses how accurately this interface is integrated into the 
overall model or simulation. 

 
Semantic Analysis 
 
Semantic analysis is conducted by the simulation programming language compiler and 
determines the modeler's intent as reflected by the code.  The compiler describes the 
content of the source code so the modeler can verify that the original intent is reflected 
accurately. 
 
The compiler generates a wealth of information to help the modeler determine if the 
true intent is translated accurately into the executable code, such as  
 

• symbol tables, which describe the elements or symbols that are manipulated in 
the model, function declarations, type and variable declarations, scoping 
relationships, interfaces, and dependencies 

• cross-reference tables, which describe called versus calling routines (where 
each data element is declared, referenced, and altered), duplicate data 
declarations (how often and where occurring), and unreferenced source code 

• subroutine interface tables, which describe the actual interfaces of the caller 
and the called 

• maps, which relate the generated runtime code to the original source code 
• pretty printers or source code formatters, which reformat the source listing 

on the basis of its syntax and semantics, clean pagination, highlighting of data 
elements, and marking of nested control structures [Whitner and Balci, 1989] 

 
Structural Analysis 
 
Structural analysis is used to examine the model structure and determine if it adheres 
to structure principles.  It is conducted by constructing a control flowgraph of the model 
structure and examining the graph for anomalies, such as multiple entry and exit points, 
excessive levels of nesting within a structure, and questionable practices such as the 
use of unconditional branches (e.g., GOTOs). 
 
Yucesan and Jacobson (1992, 1996) apply the theory of computational complexity and 
show that the problem of verifying structural properties of M&S applications is difficult to 
solve.  They illustrate that modeling issues such as accessibility of states, ordering of 
events, ambiguity of model specifications, and execution stalling are problems for which 
general design techniques do not produce efficient solutions. 
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Symbolic Evaluation 
 
Symbolic evaluation assesses model accuracy by exercising the model using symbolic 
values rather than actual data values for input.  It is performed by feeding symbolic 
inputs into a component or federate and producing expressions for the output that are 
derived from the transformation of the symbolic data along model execution paths.  
 
 

Static Techniques Example 3: 
function jobArrivalTime(arrivalRate,currentClock,randomNumber) 

lag = -10 
Y = lag * currentClock 
Z = 3 * Y 

  if Z < 0 then 
arrivalTime = currentClock – log(randomNumber) / arrivalRate 

  else 
arrivalTime = Z – log(randomNumber) / arrivalRate 

  end if 
  return arrivalTime 
end jobArrivalTime 

In symbolic execution, lag is substituted in Y resulting in Y = (–10*currentClock).  
Substituting again, Z is found to be equal to (–30*currentClock).  Since currentClock 
is always zero or positive, an error is detected in that Z will never be greater than 
zero, and the “if-then-else” statement is unnecessary. 

 
When unresolved conditional branches are encountered, a path is chosen to traverse.  
Once a path is selected, execution continues down the new path.  At some point, the 
execution evaluation will return to the branch point and the previously unselected 
branch will be traversed.  All paths eventually are taken.  
 
The result of the execution can be represented graphically as a symbolic execution tree 
[Adrion et al., 1982; King, 1976].  The branches of the tree correspond to the paths of 
the model.  Each node of the tree represents a decision point in the model and is 
labeled with the symbolic values of data at that juncture.  The leaves of the tree are 
complete paths through the model and depict the symbolic output produced.  
 
Symbolic evaluation assists in showing path correctness for all computations regardless 
of test data and is also a great source of documentation, but it has the following 
disadvantages [Dillon, 1990; King, 1976; Ramamoorthy et al., 1976]:  
 

• the execution tree can explode in size and become too complex as the model 
grows 

• loops cause difficulties although inductive reasoning and constraint analysis 
may help 

• loops make thorough execution impossible because all paths must be traversed 
• complex data structures may have to be excluded because of difficulties in 

symbolically representing particular data elements within the structure  
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Syntax Analysis 
 
Syntax analysis is done by the simulation programming language compiler to ensure 
that the mechanics of the language are applied correctly [Beizer, 1990]. 
 
Traceability Assessment 
 
Traceability assessment is used to match the individual elements of one form of the 
model to another.  For example, the elements of the system as described in the 
requirements specification are matched one to one to the elements of the simulation 
design specification.  Unmatched elements may reveal either unfulfilled requirements or 
unintended design functions [Miller et al., 1995]. 
 
 

Dynamic V&V Techniques 
 
Dynamic V&V techniques evaluate the model based on its execution behavior and as 
such require model execution.  Most dynamic V&V techniques require model 
instrumentation, the insertion of additional code (probes or stubs) into the executable 
model to collect information about model behavior during execution.  Probe locations 
are determined manually or automatically based on static analysis of the model’s 
structure.  Automated instrumentation is accomplished by a preprocessor that analyzes 
the model’s static structure (usually via graph-based analysis) and inserts probes at 
appropriate places. 
 
Dynamic V&V techniques usually are applied in three steps:  
 

1) executable model is instrumented 
2) instrumented model is executed 
3) model output is analyzed and dynamic model behavior is evaluated 

 
Dynamic Techniques Example 1: 

Consider a worldwide air traffic control and satellite communication object-oriented 
visual M&S application created by using the Visual Simulation Environment [Balci et 
al., 1995].  In step 1, the model is instrumented to record the following information 
every time an aircraft enters into the coverage area of a satellite:  

• aircraft tail number 
• time 
• aircraft’s longitude, latitude, and altitude 
• satellite’s position and identification number  

In Step 2, the model is executed and the information collected is written to an output 
file.  In Step 3, the output file is examined to reveal discrepancies and inaccuracies 
in model representation.   
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Acceptance Testing 
 
Acceptance testing is conducted by either the M&S User and the V&V Agent or the 
Developer’s quality control group in the presence of the User’s representatives.  The 
model is operationally tested with the actual hardware and data to determine whether 
all requirements specified in the legal contract are satisfied [Perry, 1995; Schach, 
1996]. 
 
Alpha Testing 
 
Alpha testing is the operational testing of the initial version of the complete model by 
the developer at an in-house site uninvolved with the model development [Beizer, 
1990]. 
 
Assertion Checking 
 
An assertion is a statement that should hold true as the simulation executes.  Assertion 
checking is a verification technique that checks what is happening against what the 
modeler assumes is happening to guard against potential errors.  The assertions are 
placed in various parts of the model to monitor execution.  They can be inserted to hold 
true globally, for the whole model; regionally, for some submodels; locally, within a 
submodel; or at entry and exit of a submodel.  
 

Visual Simulation of Global Air Traffic Control and Satellite Communication
(reprint from Balci, et al., 1995)
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Dynamic Techniques Example 2: 

Consider the following pseudo-code [Whitner and Balci, 1989]:  

Base := Hours * PayRate 

Gross := Base * (1 + BonusRate) 

In just these two simple statements, several assumptions are being made.  It is 
assumed that Hours, PayRate, Base, BonusRate, and Gross are all non-negative.  
The following asserted code can be used to prevent execution errors caused by 
incorrect values entered by the user: 

Assert Local (Hours > 0 and PayRate > 0 and BonusRate > 0) 

Base := Hours * PayRate 

Gross := Base * (1 + BonusRate) 

 
Assertion checking also prevents structural model inaccuracies.  For example, the 
model discussed in dynamic techniques example1 can contain assertions such as  
 

• a satellite communicates with the correct ground station 
• an aircraft’s tail number matches its type 
• an aircraft’s flight path is consistent with the official airline guide 

 
Clearly, assertion checking serves two important needs:  
 

• it verifies that the model is functioning within its acceptable domain 
• assertion statement documents the intentions of the modeler 

 
Assertion checking, however, degrades model performance, forcing the modeler to 
choose between execution efficiency and accuracy.  If the execution performance is 
critical, the assertions should be turned off but kept permanently in code to provide both 
documentation and means for maintenance testing [Adrion et al., 1982]. 
 
Beta Testing 
 
Beta testing refers to the developer’s operational testing of the first-release version of 
the complete model at a beta user site under realistic field conditions [Miller et al., 
1995]. 
 
Bottom-Up Testing 
 
Bottom-up testing is used with bottom-up model development.  Many well-structured 
models consist of a hierarchy of submodels.  In bottom-up development, model 
construction starts with the simulation’s routines at the base level, i.e., the ones that 
cannot be decomposed further, and culminates with the submodels at the highest level.  
As each routine is completed, it is tested thoroughly.  When routines with the same 
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parent, or submodel, have been developed and tested, the routines are integrated and 
their integration is tested.  This process is repeated until all submodels and the model 
as a whole have been integrated and tested.  The integration of completed submodels 
need not wait for all submodels at the same level to be completed.  Submodel 
integration and testing can be, and often is, performed incrementally [Sommerville, 
1996]. 
 
Some of the advantages of bottom-up testing include  
 

• it encourages extensive testing at the routine and submodel levels 
• the smaller the submodels and the more cohesion within the model, the easier 

and more complete its testing will be 
• it is particularly attractive for testing distributed models and simulations. 

 
A major disadvantage of bottom-up testing involves the need for test harnesses or 
drivers to simulate calling each submodel and to pass the test data needed to execute 
each submodel.  Developing harnesses for every submodel can be quite complex and 
difficult and the harnesses themselves may contain errors.  In addition, bottom-up 
testing faces the same cost and complexity problems as top-down testing.  
 
Comparison Testing 
 
Comparison testing (also known as back-to-back testing) may be used when more than 
one version of a model or simulation is available for testing [Pressman, 1996; 
Sommerville, 1996].  For example, different simulations may have been developed by 
the different Services to simulate the same military combat aircraft.  All simulations built 
to represent exactly the same system are run with the same input data and the model 
outputs are compared.  Differences in the outputs reveal problems with model 
accuracy.  The major disadvantage to this technique is the lack of information that 
generally exists about the validity of the other models.  In addition, if two models were 
written with the same specific, unnoticed error, the results might agree but would still be 
invalid. 
 
Compliance Testing 
 
Compliance testing compares the simulation to required security and performance 
standards.  These techniques are particularly useful for testing federations of distributed 
and interactive models and simulations.  A number of different tests are involved: 
 

• Authorization testing tests how accurately different levels of security access 
authorization are implemented in the simulation and how properly they comply 
with established rules and regulations.  The test can be conducted by 
attempting to execute a classified model within a federation or by using 
classified input data to run a simulation without proper authorization [Perry, 
1995]. 



V&V Techniques 8/15/01 
RPG Reference Document  16 

 

• Performance testing simply tests whether all performance characteristics are 
measured and evaluated with sufficient accuracy and if all established 
performance requirements are satisfied [Perry, 1995]. 

• Security testing tests whether all security procedures are implemented 
correctly and properly.  Security testing evaluates the adequacy of protective 
procedures and countermeasures by such methods as attempting to penetrate 
the simulation while it is running and attempting to break into protected 
components (e.g., secure databases) [Perry, 1995]. 

• Standards testing substantiates that the simulation or federation is developed 
with respect to the required standards, procedures, and guidelines. 

 
Debugging 
 
Debugging is a four-step iterative process used to uncover and correct errors and 
misconceptions that cause a model’s failure.   
 

• model is tested, revealing the existence of errors (bugs)  
• cause of each detected error is determined  
• model changes necessary to correct the detected errors are identified 
• necessary model changes are made  

The model should be retested immediately after changes are made to ensure 
successful modification, because a change correcting an error may create another one.  
This iterative process continues until no errors are identified after testing [Dunn, 1987]. 
 
Execution Testing 
 
Execution testing includes monitoring, profiling, and tracing techniques.  These 
techniques collect and analyze execution behavior data to reveal model representation 
errors. 
 

• Execution monitoring reveals errors by examining low-level information about 
activities and events that take place during model execution.  It requires the 
instrumentation of a model or simulation to gather data to provide activity- or 
event-oriented information about the model’s dynamic behavior. 

• Execution profiling reveals errors by examining high-level information (profiles) 
about activities and events that take place during model execution.  It requires 
the instrumentation of an executable model to gather data to present profiles 
about the model’s dynamic behavior.  

• Execution tracing reveals errors by reviewing the line-by-line execution of a 
simulation.  It requires the instrumentation of an executable model to trace the 
model’s line-by-line dynamic behavior.  The major disadvantage of the tracing 
technique is that execution of the instrumented model may produce a large 
volume of trace data too complex to analyze.  To overcome this problem, the 
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trace data can be stored in a database and the modeler can analyze it using a 
query language [Fairley, 1975, 1976]. 

 
Dynamic Techniques Example 3: 

The model in dynamic techniques example 1 can be instrumented  

• to monitor the arrivals and departures of aircraft within a particular city, and the 
results can be compared with the official airline guide to judge model validity.  
The model also can be instrumented to provide other low-level information such 
as the number of late arrivals, the average passenger waiting time at the airport, 
and the average flight time between two locations. 

• to produce histograms of aircraft departure times, arrival times, and passenger 
checkout times at an airport. 

• to record all aircraft arrival times at a particular airport.  Then the trace data can 
be compared with the official airline guide to assess model validity. 

 
Fault/Failure Insertion Testing 
 
This technique inserts a fault (incorrect model component) or a failure (incorrect 
behavior of a model component) into the model and observes whether the model 
produces the invalid behavior as expected.  Unexplained behavior may reveal errors in 
model representation. 
 
Field Testing 
 
Field testing places the model in an operational situation and collects as much 
information as possible for validation.  Field testing conducted as part of the test and 
evaluation (T&E) process is particularly important in DoD system acquisition.  Although 
it is usually difficult, expensive, and sometimes impossible to devise meaningful field 
tests for complex systems, their use wherever possible helps both the project team and 
decision makers develop confidence in the model [Shannon, 1975; Van Horn, 1971].  
The greatest disadvantage of field testing is the lack of adequate test resources to 
produce statistically significant results.  Often, simulation runs augment live test data in 
the development and decision processes. 
 
Functional Testing 
 
Functional testing (also called black-box testing) assesses the accuracy of model 
input-output transformation.  It is applied by inputting test data to the model and 
evaluating the accuracy of the corresponding outputs.  It is virtually impossible to test all 
input-output transformation paths for a reasonably large and complex simulation 
because the paths could number in the millions.  Therefore, the objective of functional 
testing is to increase confidence in model input-output transformation accuracy as 
much as possible rather than to claim absolute correctness. 
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Generating test data is a crucially important but very difficult task.  The law of large 
numbers does not apply.  Successfully testing the model under 1,000 input values (i.e., 
test data) does not imply high confidence in model input-output transformation accuracy 
just because the number appears large.  Instead, the number of input values used 
should be compared with the number of allowable input values to determine the 
percentage of the model input domain that is covered in testing.  The more the model 
input domain is covered in testing, the more confidence is gained in the accuracy of the 
model input-output transformation [Howden, 1980; Myers, 1979]. 
 
Graphical Comparison 
 
Graphical comparison is a subjective and heuristic but practical approach for examining 
the representational quality of variables.  The graphs of values of model variables over 
time are compared with the graphs of values of system variables to investigate 
characteristics such as similarities in periodicity, skew, number, and location of 
inflection points; logarithmic rise and linearity; phase shift; trend lines; and exponential 
growth constants [Cohen and Cyert, 1961; Forrester, 1961; Miller, 1975; Wright, 1972]. 
 
Interface Testing 
 
Interface testing (also known as integration testing) tests the data, model, and user 
interfaces.  Interface testing is more rigorous than the interface analysis. 
 
Data Interface Testing -- This form of testing is used to assess the accuracy of data 
entered into the model or derived from the model during execution.  All data interfaces 
are examined to substantiate that all aspects of data input and output are correct.  This 
form of testing is particularly important for those simulations in which the inputs are 
read from a database or the results are stored in a database for later analysis.  The 
model’s interface to the database is examined to ensure correct importing and 
exporting of data [Miller et al., 1995].  Data interface testing is key to the relationship 
between the VV&A effort and the corresponding data V&V effort. 
 
Model Interface Testing --This form of testing is used to detect model representation 
errors created as a result of component-to-component or federate-to-federate interface 
errors or invalid assumptions about the interfaces.  It is essential that each submodel 
within a model or model (federate) within a federation is tested individually and found to 
be sufficiently accurate before model interface testing begins.   
 
This procedure focuses on how well the submodels (or federates) are integrated with 
each other and is particularly useful for object-oriented and distributed simulations.  
 

Object-Oriented Object Paradigm 

• created with public and private interfaces 
• interface with other objects through message passing 
• reused with their interfaces 
• inherit the interfaces and services of other objects. 
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Model interface testing assesses the accuracy of four types of interfaces, as identified 
by Sommerville (1996): 
 

• Parameter interfaces that pass data or function references from one object to 
another 

• Shared memory interfaces that enable objects to share a block of memory in 
which data are placed by one object and from which they are retrieved by other 
objects 

• Procedural interfaces that implement the concept of encapsulation under the 
object-oriented paradigm—an object provides a set of services (procedures) that 
can be used by other objects and hides (encapsulates) the way a service is 
provided from the outside world 

• Message-passing interfaces that enable an object to request the service of 
another object through message passing 

 
Sommerville (1996) classifies interface errors into three categories: 
 

• Interface misuse occurs when an object calls another and incorrectly uses its 
interface.  For objects with parameter interfaces, a parameter may be of the 
wrong type or may be passed in the wrong order, or the wrong number of 
parameters may be passed. 

• Interface misunderstanding occurs when object A calls object B without 
satisfying the underlying assumptions of object B’s interface.   

Dynamic Techniques Example 4: 

Object A calls a binary search routine by passing an unordered list to be 
searched, when in fact the binary algorithm assumes that the list is already 
sorted. 

 
• Timing errors occur in real-time, parallel, and distributed simulations that use a 

shared memory or a message-passing interface. 
 
User Interface Testing -- This form of testing is used to assess the interactions 
between the User and the simulation and to detect model representation errors created 
as a result of user-model interface errors or invalid assumptions about the user 
interface.  It is particularly important for testing human-in-the-loop and interactive 
simulations.  The user interface is examined from low-level ergonomic aspects to 
instrumentation and controls and from human factors to global considerations of 
usability and appropriateness to identify potential errors [Miller et al., 1995; Pressman, 
1996; Schach, 1996]. 
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Object-Flow Testing 
 
Object-flow testing is similar to transaction-flow testing [Beizer, 1990] and thread 
testing [Sommerville, 1996].  It is used to assess model accuracy by exploring the life 
cycle of an object during model execution.  Every time the dynamic object enters into a 
subroutine, the visualization of that subroutine is displayed.  Every time the dynamic 
object interacts with another object within the subroutine, the interaction is highlighted.  
Examination of the way a dynamic object flows through the activities and processes and 
interacts with its environment during its lifetime in model execution is extremely useful 
for identifying errors in model behavior. 
 

Dynamic Techniques Example 5: 

A dynamic object (aircraft) can be marked for testing in the visual simulation 
environment for the model shown in dynamic techniques example 1.   

 
Partition Testing 
 
Partition testing examines the model with the test data generated by analyzing the 
model’s functional representations or partitions.  It is accomplished by  
 

• decomposing both the model specification and its implementation into functional 
representations (partitions) 

• comparing the elements and prescribed functionality of each partition 
specification with the elements and actual functionality of the corresponding 
partition as it has been implemented in code 

• deriving test data to test the functional behavior of each partition extensively 
• testing the model with the generated test data 

 
The model is decomposed or partitioned into functional representations (i.e., the model 
computations) through the use of symbolic evaluation techniques that maintain 
algebraic expressions of model elements and show model execution paths.  Two 
computations are equivalent if they are defined for the same subset of the input domain 
that causes a set of model paths to be executed and if the result of the computations is 
the same for each element within the subset of the input domain [Howden, 1976].  
Standard proof techniques show equivalence over a domain.  When equivalence 
cannot be shown, partition testing is performed to locate errors or, as Richardson and 
Clarke (1985, p. 1488) state, to “increase confidence in the equality of the computations 
due to the lack of error manifestation.”  By involving both the model’s specification and 
implementation, partition testing can provide more comprehensive test data coverage 
than other test data generation techniques. 
 
Predictive Validation 
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Predictive validation is used to test the predictive ability of a model [Emshoff and 
Sisson, 1970].  It requires past input and output data from the system being modeled.  
The model is driven by past system input data and its outputs are compared with the 
corresponding past system output data.  Predictive validation is often employed in Test 
and Evaluation (T&E) testing.  It is also used in the Model-Test-Model development 
methodology, which uses the test data to make subsequent improvements to the 
model. 
 
Product Testing 
 
Successful testing of each component or federate does not guarantee overall 
simulation or federation credibility.  Product testing, as well as interface testing, can be 
performed to substantiate overall model credibility.  Product testing is conducted by the 
Developer after all components have been successfully integrated (as demonstrated by 
the interface testing) and before the acceptance testing is performed by the User.  
Because no one wants the product (model) to fail the acceptance test, product testing 
should be conducted to ensure that all requirements specified in the legal contract are 
satisfied before the model is turned over to the User [Schach, 1996]. 
 
Regression Testing 
 
Regression testing is used to investigate the relationships between variables and to 
ensure that corrections and modifications to the model do not create other errors or 
adverse side effects.  Because the modified model is usually retested with the test data 
sets used previously, successful regression testing requires the retention and 
management of old test data sets throughout the model development life cycle.  
 
Sensitivity Analysis 
 
Sensitivity analysis is performed by systematically changing the values of model input 
variables and parameters over some range of interest and observing the effect upon 
model behavior [Shannon, 1975].  Unexpected effects may reveal invalidity.  The input 
values also can be changed to induce errors to determine the sensitivity of model 
behavior to such errors.  Sensitivity analysis can identify those input variables and 
parameters to which model behavior is very sensitive.  Model validity then can be 
enhanced by ensuring that those values are specified with sufficient accuracy 
[Hermann, 1967; Miller, 1974a,b; Van Horn, 1971]. 
 
Special Input Testing 
 
Special input testing assesses model accuracy by subjecting the model to a variety of 
inputs.  There are eight types of tests: boundary value, equivalence partitioning, 
extreme input, invalid input, real-time input, self-driven input, stress, and trace-driven 
input techniques.  
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• Boundary value testing is used to examine the model’s accuracy by using test 
cases on the boundaries of input equivalence classes.  A model's input domain 
usually can be divided into classes of input data (known as equivalence classes) 
that cause the model to function the same way.   

 
Dynamic Techniques Example  6: 

A traffic intersection model might specify the probability of left turn in a three-way 
turning lane as 0.2, the probability of right turn as 0.35, and the probability of 
traveling straight as 0.45.  This probabilistic branching can be implemented by using 
a uniform random-number generator that produces numbers in the range 0 ≤ rn  ≤ 1.  
Thus, three equivalence classes are identified:  

0 ≤ rn ≤ 0.2 

0.2 < rn ≤ 0.55 

0.55 < rn ≤ 1.   

Each test case from within a given equivalence class has the same effect on the 
model behavior, i.e., produces the same direction of turn.  

Because in boundary analysis, test cases are generated just within, on top of, and 
outside of the equivalence classes [Myers, 1979], for left turn, the following test 
cases should be selected: 0.0, ±0.000001, 0.199999, 0.2, and 0.200001.   

 
In addition to generating test data on the basis of input equivalence classes, it 
also is useful to generate test data that will cause the model to produce values 
on the boundaries of output equivalence classes [Myers, 1979].  The underlying 
rationale for this technique as a whole is that the most error-prone test cases lie 
along the boundaries [Ould and Unwin, 1986].  Notice that invalid test cases 
used in the example will cause the model execution to fail; however, this failure 
should be as expected and meaningfully documented. 

• Equivalence partitioning testing partitions the model input domain into 
equivalence classes in such a manner that a test of a representative value from 
a class is assumed to be a test of all values in that class [Miller et al., 1995; 
Perry, 1995; Pressman, 1996; Sommerville, 1996]. 

• Extreme input testing is conducted by running the model or simulation with 
only minimum values, maximum values, or an arbitrary mixture of minimum and 
maximum values for the model input variables.  For example, this technique 
allows the model user to test a proposed weapon system against extreme 
conditions that may not be obtainable in actual system testing. 

• Invalid input testing is performed by running the model or simulation under 
incorrect input data to determine whether the model behaves as expected.  
Unexplained behavior may reveal errors in model representations. 

• Real-time input testing is particularly important for assessing the accuracy of 
simulations built to represent embedded real-time systems.  
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Dynamic Techniques Example 7:  

Different design strategies of a real-time software system built to control the 
operations of a manufacturing system can be studied using simulation.  The model 
that represents the software design can be tested by running it with real-time input 
data that can be collected from the existing manufacturing system.   

 
Using real-time input data collected from a real system is particularly important 
to capture the timing relationships and correlations between input data points.  

• Self-driven input testing is conducted by running the model or simulation 
under input data randomly sampled from probabilistic models representing 
random phenomena in a real or future system.  A probability distribution (e.g., 
exponential, gamma, weibull) can be fit to collected data, or triangular and beta 
probability distributions can be used in the absence of data, to model random 
input conditions [Banks et al., 1996; Law and Kelton, 1991].  Then, using 
random variate generation techniques, random values can be sampled from the 
probabilistic models to test the model validity under a set of observed or 
speculated random input conditions. 

• Stress testing tests the model’s validity under extreme workload conditions.  
This is usually accomplished by increasing the congestion in the model.  

 

Dynamics Technique Example 6: 

The model in dynamic techniques example 1 can be stress tested by increasing the 
number of flights between two locations to an extremely high value.  Such an 
increase in workload may create unexpected high congestion in the model.   

 
Under stress testing, the model may exhibit invalid behavior; however, such 
behavior should be as expected and meaningfully documented [Dunn, 1987; 
Myers, 1979]. 

• Trace-driven input testing is conducted by running the model or simulation 
under input trace data collected from a real system.  A system can be 
instrumented with monitors that collect data by tracing all system events.  The 
raw trace data can then be refined to produce the real input data for testing the 
model or simulation. 

 
Statistical Techniques 
 
Much research has been conducted in applying statistical techniques to model 
validation.  The table below presents the statistical techniques proposed for model 
validation and lists related references. 
 
 

Statistical Techniques Proposed for Validation 
Technique References 
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Statistical Techniques Proposed for Validation 
Technique References 

Analysis of Variance Naylor and Finger, 1967 

Confidence Intervals/Regions Balci and Sargent, 1984; Law and Kelton, 1991; 
Shannon, 1975 

Factor Analysis Cohen and Cyert, 1961 

Hotelling’s T2 Tests Balci and Sargent, 1981, 1982a, 1982b, 1983; 
Shannon, 1975 

Multivariate Analysis of 
Variance: 

− Standard MANOVA 
− Permutation Methods 
− Nonparametric Ranking 

Methods 

Garratt, 1974 

Nonparametric Goodness-of-Fit 
Tests: 
− Kolmogorov-Smirnov Test 
− Cramer-Von Mises Test 
− Chi-square Test 

Gafarian and Walsh, 1969; Naylor and Finger, 
1967 

Nonparametric Tests of Means 
− Mann-Whitney-Wilcoxon 

Test 
− Analysis of Paired 

Observations 

Shannon, 1975 

Regression Analysis Aigner, 1972; Cohen and Cyert, 1961; Howrey 
and Kelejian, 1969 

Theil’s Inequality Coefficient Kheir and Holmes, 1978; Rowland and Holmes, 
1978; Theil, 1961 

Time Series Analyses: 
− Spectral Analysis 
 
− Correlation Analysis 
− Error Analysis 

 
Fishman and Kiviat, 1967; Gallant et al., 1974; 
Howrey and Kelejian, 1969; Hunt, 1970; Van 
Horn, 1971; Watts, 1969 
Watts, 1969 
Damborg and Fuller, 1976; Tytula, 1978 

t-Test Shannon, 1975; Teorey, 1975 
 
The statistical techniques listed in the table above require the system being modeled to 
be completely observable; i.e., all data required for model validation can be collected 
from the system.  The model is validated by using the statistical techniques to compare 
the model output data with the corresponding system output data after the model is run 
with the same input data as the real system.  Model and system outputs are compared 
using multivariate statistical techniques to capture the correlation among the output 
variables.  A recommended validation procedure based on the use of simultaneous 
confidence intervals is provided in the Appendix A. 
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Structural Testing 
 
Structural testing (also called white-box testing) evaluates the model based on its 
internal structure (how it is built), whereas functional (black-box) testing assesses the 
input-output transformation accuracy of the model.  Structural testing employs data flow 
and control flow diagrams to assess the accuracy of internal model structure by 
examining model elements such as statements, branches, conditions, loops, internal 
logic, internal data representations, submodel interfaces, and model execution paths. 
 
Structural (white-box) testing consists of six testing techniques:  
 

• branch testing 
• condition testing 
• data flow testing 
• loop testing 
• path testing 
• statement testing 

 
Branch Testing runs the model or simulation under test data to execute as many 
branch alternatives as possible, as many times as possible, and to substantiate their 
accurate operation.  The more branches that test successfully, the more confidence is 
gained in the model’s accurate execution with respect to its logical branches [Beizer, 
1990]. 
 
Condition testing runs the model or simulation under test data to execute as many 
logical conditions as possible, as many times as possible, and to substantiate their 
accurate operation.  The more logical conditions that test successfully, the more 
confidence is gained in the model’s accurate execution with respect to its logical 
conditions. 
 
Date flow testing uses the control flowgraph to explore sequences of events related to 
the status of data structures and to examine data-flow anomalies.  For example, 
sufficient paths can be forced to execute under test data to ensure that every data 
element and structure is initialized before use or every declared data structure is used 
at least once in an executed path [Beizer, 1990]. 
 
Loop testing runs the model or simulation under test data to execute as many loop 
structures as possible, as many times as possible, and to substantiate their accurate 
operation.  The more loop structures that test successfully, the more confidence is 
gained in the model’s accurate execution with respect to its loop structures [Pressman, 
1996]. 
 
Path testing runs the model or simulation under test data to execute as many control 
flow paths as possible, as many times as possible, and to substantiate their accurate 
operation.  The more control flow paths that test successfully, the more confidence is 
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gained in the model’s accurate execution with respect to its control flow paths, but 100 
percent path coverage is impossible to achieve for a reasonably large M&S application 
[Beizer, 1990].   
 
Path testing is performed in three steps [Howden, 1976].  
 

1) The model control structure is determined and represented in a control flow 
diagram 

2) Test data is generated to cause selected model logical paths to be executed.  
Symbolic evaluation can be used to identify and classify input data based on the 
symbolic representation of the model.  The test data is generated in such a way 
as to  

− cover all statements in the path 

− encounter all nodes in the path 

− cover all branches from a node in the path 

− achieve all decision combinations at each branch point in the path 

− traverse all paths [Prather and Myers, 1987] 
3) By using the generated test data, the model is forced to proceed through each 

path in its execution structure, thereby providing comprehensive testing.  
 
In practice, only a subset of all possible model paths is selected for testing due to 
budgetary constraints.  Recent work has sought to increase the amount of coverage per 
test case and to improve the effectiveness of the testing by selecting the most critical 
areas to test.  The path prefix strategy is an adaptive strategy that uses previously 
tested paths as a guide in the selection of subsequent test paths.  Prather and Myers 
(1987) prove that the path prefix strategy achieves total branch coverage.  
 
The identification of essential paths is a strategy that reduces the path coverage 
required by nearly 40 percent [Chusho, 1987] by eliminating nonessential paths.  Paths 
overlapped by other paths are nonessential.  The model control flow graph is 
transformed into a directed graph whose arcs (called primitive arcs) correspond to the 
essential paths of the model.  Nonessential arcs are called inheritor arcs because they 
inherit information from the primitive arcs.  The graph produced during the 
transformation is called an inheritor-reduced graph.  Chusho (1987) presents 
algorithms for efficiently identifying nonessential paths, reducing the control graph into 
an inheritor-reduced graph, and applying the concept of essential paths to the selection 
of effective test data.  
 
Statement testing runs the model or simulation under test data to execute as many 
statements as possible, as many times as possible, and to substantiate their accurate 
operation.  The more statements that test successfully, the more confidence is gained 
in the model’s accurate execution with respect to its statements [Beizer, 1990]. 
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Submodel / Module Testing 
 
Submodel testing requires a top-down decomposition of the model into submodels.  
The executable model is instrumented to collect data on all input and output variables 
of a submodel.  The system is instrumented (if possible) to collect similar data.  Then, 
the behavior of each submodel is compared with the corresponding subsystem’s 
behavior to judge the submodel’s validity.  If a subsystem can be modeled analytically, 
its exact solution can be compared against the simulation solution to assess its validity 
quantitatively. 
 
Validating each submodel individually does not imply sufficient validity for the whole 
model.  Each submodel is found sufficiently valid with some allowable error.  The 
allowable errors can accumulate to make the whole model invalid.  Therefore, after 
each submodel is validated, the whole model itself must be tested. 
 
Symbolic Debugging 
 
This technique employs a debugging tool that allows the modeler to manipulate model 
execution while viewing the model at the source code level.  By setting breakpoints, the 
modeler can interact with the entire model one step at a time, at predetermined 
locations, or under specified conditions.  While using a symbolic debugger, the modeler 
may altar model data values or replay a portion of the model, i.e., execute it again 
under the same conditions.  Typically, the modeler utilizes the information gathered with 
execution testing techniques to isolate a problem or its proximity.  Then the debugger is 
employed to determine how and why the error occurs.  
 
Current state-of-the-art debuggers can view the runtime code as it appears in the 
source listing, set watch variables to monitor data flow, examine complex data 
structures, and even communicate with asynchronous input/output channels.  The use 
of symbolic debugging can reduce greatly the debugging effort while increasing its 
effectiveness.  Symbolic debugging allows the modeler to locate errors and check 
numerous circumstances that lead to errors [Whitner and Balci, 1989]. 
 
Top-Down Testing 
 
Top-down testing is used with top-down model development.  In top-down 
development, model construction starts with the submodels at the highest level and 
culminates with the routines at the base level, i.e., the ones that cannot be decomposed 
further.  As each submodel is completed, it is tested thoroughly.  When submodels with 
the same parent have been developed and tested, the submodels are integrated and 
their integration is tested.  This process is repeated until the whole model has been 
integrated and tested.  The integration of completed submodels need not wait for all 
submodels at the same level to be completed.  Submodel integration and testing can 
be, and often is, performed incrementally [Sommerville, 1996]. 
 
Top-down testing begins with a test of the global model at its highest level.  When 
testing a given level, calls to submodels at lower levels are simulated using stubs.  A 
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stub is a dummy submodel that has no function other than to let its caller complete the 
call.  Fairley (1976) lists the following advantages of top-down testing:  
 

• model integration testing is minimized 
• a working model is produced earlier in the development process 
• higher level interfaces are tested first 
• a natural environment for testing lower levels is created 
• errors are localized to new submodels and interfaces 

 
Some of the disadvantages of top-down testing include [Fairley, 1976]: 
 

• thorough submodel testing is discouraged, because the entire model must be 
executed to perform testing 

• testing can be expensive, because the whole model must be executed for each 
test 

• adequate input data is difficult to obtain because of the complexity of the data 
paths and control predicates 

• integration testing is hampered because of the size and complexity of testing the 
whole model 

 
Visualization / Animation 
 
Visualization and animation of a simulation greatly assist in model V&V [Sargent, 1992].  
Displaying graphical images of internal (e.g., how customers are served by a cashier) 
and external (e.g., utilization of the cashier) dynamic behavior of a model during 
execution exhibits errors.   
 

Dynamic Techniques Example 8: 

In visual simulation of a traffic intersection, the modeler can observe the arrival of 
vehicles in different lanes and their movements through the intersection as the traffic 
light changes.  Visualizing the model as it executes and comparing it with the real traffic 
intersection can help identify discrepancies between the model and the system. 

 
Seeing the model in action is very useful for uncovering errors; however, it does not 
guarantee model correctness [Paul, 1989].  Therefore, visualization should be used 
with caution. 
 
 

Formal Techniques 
 
Formal V&V techniques are based on formal mathematical proofs of correctness.  If 
attainable, a formal proof of correctness is the most effective means of model V&V. 
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Unfortunately, “if attainable” is the sticking point.  Current formal proof of correctness 
techniques cannot even be applied to a reasonably complex simulation; however, 
formal techniques can serve as the foundation for other V&V techniques.  The most 
commonly known techniques are briefly described below [Khanna, 1991; Whitner and 
Balci, 1989]. 
 
Induction, Inference, and Logical Deduction are simply acts of justifying conclusions 
on the basis of premises given.  An argument is valid if the steps used to progress from 
the premises to the conclusion conform to established rules of inference.  Inductive 
reasoning is based on invariant properties of a set of observations; assertions are 
invariants because their value is defined to be true.  Given that the initial model 
assertion is correct, it stands to reason that if each path progressing from that assertion 
is correct and each path subsequently progressing from the previous assertion is 
correct, then the model must be correct if it terminates.  Birta and Ozmizrak (1996) 
present a knowledge-based approach for M&S validation that uses a validation 
knowledge base containing rules of inference. 
 
Inductive Assertions assess model correctness based on an approach that is very 
close to formal proof of model correctness.  It is conducted in three steps.  
 

1) Input-to-output relations for all model variables are identified 
2) These relations are converted into assertion statements and are placed along 

the model execution paths so that an assertion statement lies at the beginning 
and end of each model execution path 

3) Verification is achieved by proving for each path that, if the assertion at the 
beginning of the path is true and all statements along the path are executed, 
then the assertion at the end of the path is true  

If all paths plus model termination can be proved, by induction, the model is proved to 
be correct [Manna et al., 1973; Reynolds and Yeh, 1976]. 
 
Lambda Calculus [Barendregt, 1981] is a system that transforms the model into formal 
expressions by rewriting strings.  The model itself can be considered a large string.  
Lambda calculus specifies rules for rewriting strings to transform the model into lambda 
calculus expressions.  Using lambda calculus, the modeler can express the model 
formally to apply mathematical proof of correctness techniques to it. 
 
Predicate Calculus provides rules for manipulating predicates.  A predicate is a 
combination of simple relations, such as completed_jobs > steady_state_length.  A 
predicate will be either true or false.  The model can be defined in terms of predicates 
and manipulated using the rules of predicate calculus.  Predicate calculus forms the 
basis of all formal specification languages [Backhouse, 1986]. 
  
Predicate Transformation [Dijkstra, 1975; Yeh, 1977] verifies model correctness by 
formally defining the semantics of the model with a mapping that transforms model 
output states to all possible model input states.  This representation is the basis from 
which model correctness is proved. 
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Formal Proof of Correctness expresses the model in a precise notation and then 
mathematically proves that the executed model terminates and satisfies the 
requirements with sufficient accuracy [Backhouse, 1986; Schach, 1996].  Attaining 
proof of correctness in a realistic sense is not possible under the current state of the art.  
The advantage of realizing proof of correctness is so great, however, that, when the 
capability is realized, it will revolutionize V&V. 
 

Guidelines for Selecting V&V Techniques 
 
In the overall problem solving process diagram shown below, the V&V Process is 
depicted as a subprocess of the M&S Use Process that interacts with both the M&S 
Development/Preparation Process and the Accreditation Process.  (See the 
diagrams for VV&A and the New Development Process, VV&A and Legacy M&S 
Preparation, and VV&A and Federation Construction for a more detailed view of these 
interactions.) 
 
 

 
Any V&V process involves a series of activities and tasks that are selected to address 
the particular needs of the application and to map to the phases and activities of the 
particular development or preparation process involved.  .  What tasks are selected and 
what techniques are chosen to accomplish them depend upon a number of factors, 
such as 
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• type of simulation (legacy, new M&S, federation) 
• problem to be solved 
• objectives and requirements and their acceptability criteria 
• risks and priorities of the User 
• constraints (time, money, personnel, equipment) 

 
See the core documents for V&V Agent Role in the VV&A of New Simulations, V&V 
Agent Role in the VV&A of Legacy Simulations, V&V Agent Role in the VV&A of 
Federations for additional information about specific V&V activities and tasks. 
 
In the table below, the specific informal, static, dynamic, and formal V&V techniques, 
listed in the V&V technique taxonomy table and discussed in the first part of this 
document are mapped to the basic phases of simulation development and use (i.e., 
requirements definition, conceptual model development, design, implementation, use, 
and assessment).  Brief synopses of the techniques are provided by hot link.  Additional 
columns also indicate whether a technique is used primarily to support verification, 
validation, or both..  Selecting the best technique to apply to a given V&V task in a 
given situation is not always straightforward (see the example at Appendix B).  The 
reference document on V&V Tools provides a discussion of the types of tools that can 
be used to perform various V&V techniques. 
 

Common V&V Technique Applications 
M&S Phase V&V Category 

Class V&V Technique 
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R
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Dyn Acceptance test 1     X X X X 

Dyn Alpha test 2    X X  X X 

Dyn Assertion check 3    X   X  

Inf Audit 4 X X X X   X X 

Dyn Authorization test 5    X X X X  

Dyn Beta test 6    X X  X X 

Dyn Bottom-up test 7    X   X  

Dyn Boundary value test 8    X   X X 

Dyn Branch test 9    X   X  

Stat Calling structure 
analysis10  X X X   X  

Stat Cause-effect 
graphing11 X X X X   X X 

Dyn Comparison test12 X X X X X   X 
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Common V&V Technique Applications 
M&S Phase V&V Category 

Class V&V Technique 
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Stat Concurrent process 
analysis13    X X  X  

Dyn Condition test14    X   X  

Stat Control flow analysis15  X X X   X  

Stat Data dependency 
analysis16  X X X   X  

Stat Data flow analysis17  X X X   X  

Dyn Data flow test18    X   X  

Dyn Data interface test19    X X  X  

Dyn Debugging20    X   X X 

Inf Desk check21 X X X X   X  

Inf Documentation check X X  X X    

Dyn Equivalence 
partitioning test22    X   X X 

Dyn Execution monitoring23    X X  X X 

Dyn Execution profiling24    X X  X X 

Dyn Execution trace25    X X  X X 

Dyn Extreme input test26    X   X X 

Inf Face validation27 X X X X X X  X 

Stat Fault/Failure 
analysis28    X X  X  

Dyn Fault/Failure insertion 
test29    X X  X X 

Dyn Field test30     X   X 

Dyn Functional test31    X X  X X 

Dyn Graphical 
comparison32    X X  X X 

For Induction  X X      

For Inductive assertions   X X    X  

For Inference  X X    X  

Inf Inspection33 X X X X X X X X 

Dyn Invalid input test34    X X  X X 

For Lambda calculus  X X      

For Logical deduction   X X      

Dyn Loop test35    X   X  
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Common V&V Technique Applications 
M&S Phase V&V Category 

Class V&V Technique 
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Stat Model interface 
analysis36 X X X    X X 

Dyn Model interface test37    X X X X  

Dyn Object-flow test38    X X X X  

Dyn Partition test39   X X   X X 

Dyn Path test40    X X  X  

Dyn Performance test41     X X X  

For Predicate calculus  X X      

For Predicate 
transformation   X X      

Dyn Predictive validation42    X X X  X 

Dyn Product test43     X X X X 

For Proof of Correctness  X X      

Dyn Real-time input test44    X X X  X 

Dyn Regression test45    X X  X  

Inf Review46 X X X X X X X X 

Dyn Security test47     X X X  

Dyn Self-driven input test48    X X X  X 

Stat Semantic analysis49    X X  X  

Dyn Sensitivity analysis50    X X X X X 

Dyn Standards test51     X X X  

Stat State transition 
analysis52  X X X   X  

Dyn Statement test53    X X X X  

Dyn Statistical 
techniques54    X X X  X 

Dyn Stress test55    X X X  X 

Stat Structural analysis56  X X    X  

Dyn Submodel/Module 
test57    X    X 

Dyn Symbolic debugging58    X   X  

Stat Symbolic evaluations59   X    X  

Stat Syntax analysis60    X   X  

Dyn Top-down test61    X   X  

Stat Traceability 
assessment62  X X X X  X X 
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Common V&V Technique Applications 
M&S Phase V&V Category 

Class V&V Technique 
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Dyn Trace-driven input 
test63     X X X  X 

Inf Turing test64     X X X  X 

Stat User interface 
analysis65  X  X X X X X 

Dyn User interface test66     X X  X  

Dyn Visualization/ 
Animation67    X X X X X 

Inf Walkthroughs68 X X X X X X X X 

 
Conducting an effective V&V effort is extremely important for the successful completion 
of complex and large-scale simulation applications and for resolution of complex 
problems.  How much to test or when to stop testing depends on the requirements of 
the application or problem involved.  The V&V effort should continue until the User 
obtains sufficient confidence in the credibility and acceptability of the simulation results.   
 
 

                                                           
1 Operationally test the model with actual hardware and data to determine if specified requirements are 
met. 
2 Operational testing of initial, complete version of the model at an in-house site uninvolved with the model 
development. 
3 Verification technique – an assertion is a statement that should hold true as the simulation executes and 
is placed in various parts of the model. 
4 Assess the application of M&S with respect to established policies, standards. 
5 Test the implementation in a simulation of security access authorization. 
6 Developer’s operational testing of first release version of complete model at a beta user site. 
7 Thoroughly test simulation’s routines starting from the base level to the highest level. 
8 Examine accuracy by using test cases on the boundaries of input data classes. 
9 Use test data to execute as many branch alternatives as possible. 
10 Assess model accuracy by identifying who calls whom, who is called by whom. 
11 Identify cause/effects of modeled system, create decision table and convert into test cases with which 
the model is tested. 
12 Compare results from models of the same system. 
13 Assess model accuracy by investigating possible synchronization and time management problems in 
parallel or distributed simulations. 
14 Run under test data to execute as many logical conditions as possible. 
15 Graph the model to examine sequences of control transfer to identify incorrect or inefficient constructs 
within the model  representation. 
16 Determines which variables depend on other variables.  Critical for assessing synchronization accuracy 
across multiple processors. 
17 Assess use of model variables with respect to when variable space is allocated, accessed, and 
deallocated. 
18 Explore sequences of events related to the status of data structures and examine data flow anomalies. 
19 Ensure that data entering the model and derived from the model are accurately read or stored. 
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20 Iterative process to uncover and correct errors or misconceptions. 
21 Process of intensely examining work to ensure correctness, completeness, clarity. 
22 Test the accuracy of the model with a representative value from each input data class. 
23 Gather and examine activity- and event-oriented (low-level) information resulting from model execution. 
24 Examine high-level information (profiles) about activities and events during model execution. 
25 Reveals errors by reviewing line-by-line execution of a simulation. 
26 Assess model at minimum or maximum values for the model inputs. 
27 Subjective comparison of model and system behaviors; preliminary approach to validation in the early 
stages of development. 
28 Examine model design specification to determine if any failures logically could occur, and under what 
conditions. 
29 Insert a fault or failure and observe if the model produces the expected invalid behavior. 
30 Places the model in an operation situation to collect information for validation. 
31 Assesses the accuracy of model input-output transformation. 
32 Compare graphs of model variables over time to system variables. 
33 Formalized five-step process, checklist approach for uncovering errors. 
34 Examine model performance using incorrect input data. 
35 Run model to execute as many loop structures as possible. 
36 Determines if interface structure and behavior are accurate. 
37 Assess how well submodels are integrated with each other. 
38 Examine the way a dynamic object flows through activities/processes during its lifetime in model 
execution. 
39 Analyze the model’s functional partitions by comparing partitions of the model specification and 
implementation and testing model with test data. 
40 Run model to execute as many control flow paths as possible. 
41 Test whether all performance characteristics are measured and evaluated with sufficient accuracy. 
42 Use past input data, then compare model outputs with past output data. 
43 Preparation for acceptance testing. 
44 For simulations representing embedded real-time systems, assess model accuracy using real-time 
input data. 
45 Investigates variable relationships, ensures that modifications do not create other errors. 
46 Evaluation relative to specifications and standards by management level team. 
47 Assess model using input data sampled from probabilistic models representing random input conditions 
for a real system. 
48 Assess model using input data sampled from probabilistic models representing random input conditions 
for a real system. 
49 The content of the source code as described by the compiler is examined by the modeler to verify that 
the original intent is accurately reflected. 
50 Identify variables/parameters to which model behavior is very sensitive. 
51 Substantiates that the M&S application is developed to meet required standards, procedures, and 
guidelines. 
52 Using a state transition diagram, assess model accuracy by analyzing conditions under which a state 
change occurs. 
53 Run model to execute as many statements as possible. 
54 Model and system outputs are compared using multivariate statistical techniques to capture correlation. 
55 Assess model validity under extreme workload conditions. 
56 Examines model structure for anomalies such as unconditional branches, excessive nesting, multiple 
entry/exit points. 
57 Decompose model into submodels.  Compare the behavior of each submodel to the behavior of the 
corresponding subsystem of the actual system. 
58 Debugging tool to manipulate model execution while viewing the model at source code level. 
59 Technique that shows path correctness for all computations. 
60 Done by the compiler to ensure that language mechanics are correctly applied. 
61 Test model at starting at highest level to base level. 
62 Used to match elements of one form of the model to another such as requirements specification 
elements to model design specification. 
63 Refine raw trace data collected from a real system for testing a model. 
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64 Examination by experts on output data, one from the model and one from the system for feedback in 
correcting model representation. 
65 Examines user-model interface to prevent errors during user’s interactions with model. 
66 Tests human-in-the-loop and interactive simulations. 
67 Display graphical images of model’s dynamic behavior during execution. 
68 Meeting to detect and document faults, less formal than inspections. 
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Appendix A:  Validation Procedure Using Simultaneous 
Confidence Intervals 
 
The behavioral accuracy (validity) of a simulation with multiple outputs can be 
expressed in terms of the differences between the corresponding model and system 
output variables when the model is run with the same input data and operational 
conditions that drive the real system.  The range of accuracy of the jth model output 
variable can be represented by the jth confidence interval (c.i.) for the differences 
between the means of the jth model and system output variables. The simultaneous 
confidence intervals (s.c.i.) formed by these confidence intervals are called the model 
range of accuracy (m.r.a.) [Balci and Sargent, 1984]. 
 
Assume that there are k output variables from the model and k output variables from 
the system as shown in the figure below.   
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= , ,...,  be the k dimensional vectors of 
the population means of the model and system output variables, respectively.   
 
Basically, there are three approaches for constructing the s.c.i. to express the m.r.a. for 
the mean behavior. 
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In Approach 1, the m.r.a. is determined by the 100 ( )1−γ % s.c.i. for µ µm s−  as 
 
(1) [ ]δ τ−  

 
where [ ]δ δ δ δ′ = 1 2, ,..., k  represents lower bounds and [ ]τ τ τ τ′ = 1 2, ,..., k  represents 
upper bounds of the s.c.i.  The modeler can be 100 ( )1−γ % confident that the true 
differences between the population means of the model and system output variables 
are simultaneously contained within (1). 
 
In Approach 2,  the 100 ( )1 m−γ % s.c.i. are first constructed for µ m  as 
 
(2) [ ]δ τm m,  

 

where ( ) [ ]δ δ δ δm
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= , ,..., .  Then, the 100 ( )1 s−γ % s.c.i. 

are constructed for µ s  as 
 
(3) [ ]δ τs s,  
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= , ,...,  and ( ) [ ]τ τ τ τs
1
s

2
s
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= , ,..., . Finally, using the Bonferroni 

inequality, the m.r.a. is determined by the following s.c.i. for µ µm s−  with a confidence 

level of at least ( )1− −γ γm s  when the model and system outputs are dependent and 

with a level of at least ( )1− − +γ γ γ γm s m s  when the outputs are independent [Kleijnen, 
1975]:  
 
(4) [ ]δ τ τ δm s m s− −,  
 
In Approach 3, the model and system output variables are observed in pairs and the 
m.r.a. is determined by the 100 ( )1−γ % s.c.i. for µ d , the population means of the 
differences of paired observations, as 
 
(5) [ ]δ τd d,  
 

where ( ) [ ]δ δ δ δd
1
d

2
d
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= , ,...,  and ( ) [ ]τ τ τ τd
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= , ,..., . 
 
The m.r.a. is constructed with the observations derived from the model and system 
output variables by running the model with the same input data and operational 
conditions that drive the real system.  If the simulation is self-driven, then the model 



V&V Techniques 8/15/01 
Appendix A      A - 3 

 

input data come independently from the same populations or stochastic process as the 
system input data.  Because the model and system input data are independent of each 
other, but come from the same populations, the model and system output data are 
expected to be independent and identically distributed.  Hence, Approach 1 or 2 can be 
used.  The use of Approach 3 in this case would be less efficient. If the simulation is 
trace-driven, the model input data are exactly the same as the system input data.  In 
this case, the model and system output data are expected to be dependent and 
identical.  Therefore, Approach 2 or 3 should be used. 
 
Sometimes, the model or simulation application sponsor or proponent may specify an 
acceptable range of accuracy for a specific simulation.  This specification can be made 
for the mean behavior of a stochastic simulation as 
 
(6) L Um s≤ − ≤µ µ  
 
where [ ]L L , L ,...,L1 2 k

′ =  and [ ]U U , U ,..., U1 2 k
′ =  are the lower and upper bounds of 

the acceptable differences between the population means of the model and system 
output variables.  In this case, the m.r.a. should be compared against Equation (6) to 
evaluate model validity. 
 
The shorter the lengths of the m.r.a., the more meaningful is the information they 
provide.  The lengths can be decreased by increasing the sample sizes or by 
decreasing the confidence level.  Such increases in sample sizes, however, may 
increase the cost of data collection.  Thus, a trade-off analysis may be necessary 
among the sample sizes, confidence levels,  half-length estimates of the m.r.a., data 
collection method, and cost of data collection.  For details of performing the trade-off 
analysis, see Balci and Sargent, 1984. 
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Appendix B:  Selecting V&V Techniques for Defect Detection 
 
The table below shows the subset of the V&V techniques listed in the Common V&V 
Technique Applications table that are considered useful for detecting software defects.  
This subset was analyzed by a survey done to assess the types and frequency of 
defects detected using conventional software verification methods [SAIC, 1993].  In the 
survey, 52 types of defects were assessed, the defects falling into one of three 
categories: requirements, design, and code. 
 

Capability of V&V Techniques to Detect Software Defects 

V&V Technique 

Requirements 
Defect Types 

Detected  
(Out of 13) 

Design Defect 
Types 

Detected 
(Out of 15) 

Code Defect 
Types 

Detected 
(Out of 24) 

Assertion check 0 0 2 
Branch test 0 2 6 
Calling structure 
analysis 1 5 15 

Cause-effect graphing 2 2 1 
Concurrent process 
analysis 0 0 9 

Condition test 0 0 12 
Control flow analysis 1 3 9 
Data flow analysis 3 0 12 
Data interface test 2 4 3 
Desk checking 0 0 5 
Fault/Failure insertion 
test 0 0 19 

Field test 0 15 24 
Inductive assertions 4 4 14 
Inspections    
Path test  2 8 
Regression test 0 0 24 
State transition 
analysis 1 3 9 

Statement test 0 0 2 
Stress test 0 15 24 
User interface analysis 8 8 3 
Walkthroughs 0 0 14 

 
The reference acknowledges that the survey was subjective in nature and ignored 
questions of how well or how easily a defect could be found by a particular method.  
However, the goal of the survey was to determine what techniques might be expected 



V&V Techniques 8/15/01 
Appendix B      B - 2 

 

to detect a particular type of flaw.  In all, 13 requirements defects, 15 design defects, 
and 24 code defects are defined.  Survey results for all three categories are 
summarized in the table below. 
 
Results indicate that a user interface analysis is expected to detect most of the study’s 
pre-defined 13 requirements defects, while field testing and stress testing are expected 
to detect all of the 15 identified design defects.  Top techniques for detecting the code 
defects include field testing, stress testing, and regression testing.  Similar results are 
expected when applying these techniques to V&V of M&S. 
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