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Executive Summary  
 
Many problems exist with respect to the procedures and technologies used to develop mixed 
architecture live, virtual, and constructive (LVC) environments.  The incompatibilities between these 
architectures require expending a considerable amount of resources to develop point solutions that 
effectively integrate them into a single, unified set of supporting simulation services.  Gateway 
solutions to these types of issues have frequently restricted exercises to using only the limited set of 
capabilities that are common across all of the architectures, resulting in a “dumbing down” of the 
more capable architectures.  Further, the lack of high-level management oversight of all existing 
distributed simulation architectures (as a unified resource) has resulted in a situation where continued 
8ivergence of architectural capabilities is not only possible but likely, and new (potentially redundant) 
architectures can emerge at any time.  Clearly, such issues must be satisfactorily resolved if long-
term interoperability goals are to be achieved. 
 
The architectures that were considered as part of this study include: 
 

• Distributed Interactive Simulation (DIS)  
• Aggregate-Level Simulation Protocol (ALSP)  
• High-Level Architecture (HLA)  
• Test and Training Enabling Architecture (TENA) 
• Common Training and Instrumentation Architecture (CTIA)   

 
Each of these architectures was designed to address the requirements of their defined user base.  
LVCAR Phase I efforts analyzed the core requirements of each architecture and directly compared 
key categories of requirements.  There is a high degree of functional commonality between the 
architectures, particularly regarding HLA, TENA, and CTIA.  However, there are also some key 
differences, stemming from specific needs that originally drove the development of each architecture.   
 
At the implementation level, there are substantive differences among the architectures.  Such 
differences are characterized as "wedge issues", potentially becoming barriers to achieving cross-
architecture interoperability. The study finds that none of the wedge issues introduce irreconcilable 
incompatibilities that prevent the integration of the different architectures into mixed architecture 
events.  However, achieving such integration is not without cost, and some degree of 
analysis/experimentation is required to determine the best near-, mid-, and long-term solutions to 
addressing these incompatibilities.     
 
A set of five potential strategies has been identified, and a corresponding set of advantages and 
disadvantages associated with each of them.  An analysis of these factors, along with an assessment 
of how well each strategy met requirements derived from assertions that characterize the current LVC 
interoperability picture, led to the elimination of three strategies from further consideration.  The 
remaining strategies (Strategies 2 and 3) are defined as follows: 
 

• Strategy 2: Define and develop mechanisms to improve LVC interoperability in mixed-
architecture environments, assuming that the current architectures will continue to be used. 

• Strategy 3: Develop policy and incentives to encourage existing architectures to converge 
(over some defined period of time) to either a single architecture or a smaller set of 
architectures. 

 
The final phase (Phase II) of the LVCAR study effort resulted in a more detailed assessment of the 
two remaining strategies. Phase II efforts also developed the temporally sequenced set of actions 
required to implement the strategy.  Each action was assessed according to its inherent benefit and 
cost, and value considerations strongly influenced the final configuration of the LVC architecture 
roadmap.  
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1 Introduction and Overview 
The goal of the LVCAR study is “to methodically and objectively develop a recommended roadmap 
(way forward) regarding LVC interoperability across three broad areas of concern:  definition of the 
desired future integrating architecture(s), the desired business model(s), and the manner in which 
standards should be evolved and compliance evaluated.  The roadmap will also provide: 
 
 Rationale for these recommendations, citing the findings on which they are based 
 An assessment of how any LVC architecture policy change might be perceived in the user 

communities, with a recommendation on optimal ways to communicate this new direction 
 Recommended next steps (e.g., experiments, prototyping new architecture(s), etc.)” 
 
Sponsored and funded by the U.S. Department of Defense (DoD) Modeling and Simulation (M&S) 
Steering Committee (SC), the study will explore and assess a number of alternatives supporting 
simulation interoperability (at the technical level), business models, and the evolution process of 
standards management across the Department.  The goal is to define an efficient, effective path to 
maximize technical interoperability of M&S systems across the U.S. DoD.  This document provides 
the findings developed by the LVCAR Architecture team. 
 

1.1 General Problem Statement 
The early 1990’s saw many accomplishments in the area of distributed simulation.  The earliest 
successes came through the SIMNET program, which demonstrated that geographically dispersed 
simulation systems could support distributed training by interacting with each other across network 
connections.  Following on this success, the Aggregate-level Simulation Protocol (ALSP) extended 
the benefits of distributed simulation to the force-level training community so that different aggregate-
level simulations could cooperate to provide theater-level experiences for battle-staff training.  At 
about the same time, the SIMNET protocol evolved and matured into the Distributed Interactive 
Simulation (DIS) standard.  DIS allowed an increased number of simulation types to interact in 
distributed events, but was again focused on the platform-level training community.  In the middle 
1990’s, the Defense Modeling and Simulation Office (DMSO) started the High-Level Architecture 
(HLA) program to combine the best features of DIS and ALSP into a single architecture that could 
also support uses in the analysis and acquisition communities, while continuing to support training 
applications.  HLA was designed from the start to support a wide set of potential user communities.  
 
As is the case with most broadly applicable tools, some began to perceive HLA as a “jack of all 
trades, but master of none.”  In particular, two communities started development of alternate 
architectures due to their perception that HLA included unacceptable performance limitations.  The 
real-time test range community started development of the Test and Training Enabling Architecture 
(TENA) to provide low-latency, high-performance service in the hard-real-time application of 
integrating live assets in the test-range setting.  Similarly, the Army started development of the 
Common Training Instrumentation Architecture (CTIA) to interconnect live assets on Army training 
ranges as they participated in large-scale exercises. 
 
With the exception of SIMNET, all of these architectures remain in service today.  Some are in early 
and growing use (e.g., CTIA, TENA) while others have seen a reduction, but not elimination, of their 
user base (e.g., ALSP).  Each of the architectures is providing an acceptable level of capability within 
the areas where they have been adopted.  However, ALSP, DIS, HLA, TENA, and CTIA federations 
are not inherently interoperable with each other.  Thus, when simulation events include applications 
that rely on the different architectures, additional steps must be taken to allow effective 
communication between all applications.  These additional steps, typically involving interposing 
gateways or bridges between the various architectures, may introduce increased risk, complexity, 
cost, level of effort, and preparation time into the event.  Additional problems extend beyond the 
implementation of individual simulation events.   As a single example, the ability to reuse supporting 
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models, personnel (expertise), and applications across the different protocols is limited.  In short, the 
limited inherent interoperability between the different protocols introduces a significant and largely 
unnecessary barrier to the integration of live, virtual, and constructive simulations.  This barrier must 
be greatly reduced or eliminated. 
 

1.2 An Underlying and Fundamental Aspect of the Problem 
There is a perception by many in the LVC community that interoperability will be much easier (and 
less costly) if there is only a single architecture available for use.  Stated somewhat differently, many 
share the opinion that reducing the number of available architectures to one would result in a far 
easier interoperability situation than we face today.  Included in this perception is the concept that the 
Department would benefit by eliminating the costs associated with maintaining overlapping 
capabilities.  The desire to achieve a single-architecture state is based on a number of difficulties in 
the current situation that can be directly attributed to the existence of multiple architectures. 
 
First, problems arise whenever multiple architectures must be integrated for use in a single event.  In 
many cases, such mixed-architecture events can only use the set of capabilities common across all of 
the architectures to be included in the event.  This is sometimes described as the “dumbing down” of 
the more capable architectures because the full range of unique capabilities they offer (e.g., more 
advanced capabilities such as repeatability, communications bandwidth efficiency, ownership 
transfer) cannot be used across the entire set of participating systems.  Further, the costs required to 
integrate architectures rarely contribute directly to achieving simulation event goals.  Instead, the 
associated costs usually provide point solutions, versions of which have likely been created in the 
past and probably will be paid for again in the future.  Thus, the integration costs are viewed as 
recurring expenses that contribute little to achieving event goals and should thus be eliminated.  
Mixed architectures also impede “plug-and-play”; it is slower, more expensive, and sometimes 
impractical to compose simulation events using any of the wide range of assets (e.g., simulations, 
simulators, labs, ranges, C4ISR systems, etc.) available in the DoD inventory.  In this view, one 
cannot simply choose an asset based on functional merit alone in all cases; frequently, the asset also 
is constrained to be compatible with a specific architecture.  If the “out-of-the-box” compatibility 
constraints are ignored, some amount of additional cost (time, dollars, etc.) often follows.  Typically, 
this cost cannot be ignored, so event designers will not even consider incompatible assets and will 
thus design events without having a complete picture of the resources that might have been used. 
 
However, while each of these disadvantages can be attributed to the existence and simulation system 
use of multiple architectures, their existence does not necessarily justify an assumption that ridding 
the DoD of all but one architecture would result in an optimal state of affairs.  In light of past 
experience, there are at least five main factors indicating such an assumption appears to be 
fallacious.  First, legacy systems will continue to be used and it is unlikely that these systems will 
upgrade to using a new or different architecture.  Thus, use of legacy systems is most likely to 
preclude the possibility of ever achieving a truly “single-architecture” state.  Second, use of a single 
architecture may still require the use of supporting bridges, much as use of different RTIs (all derived 
from the same HLA architectural specification) can require bridges today.  Third, gateways will be 
required for connecting any single simulation architecture to C4I systems, to the GIG, or, in general, 
to any type of system that has a primary purpose outside of the simulation arena.   Fourth, the 
alignment of a family of simulations on a single architecture represents a single point solution.  
Having attained such standardization, history points to the likelihood that the diverse group of 
simulation users will quickly diverge into specializations, leading to the need for gateways to bridge 
their differences.  Fifth, the selection or creation of a single architecture assumes that the rapid 
advances of the commercial software industry will not lead to a better implementation in the future, 
perhaps based on a Service-Oriented Architecture (SOA) paradigm. When this does occur, the 
existing standard architecture would be abandoned by users who have needs for the superior 
architecture delivered by the commercial sources. 
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The simultaneous existence of multiple architectures may allow benefits that are less likely to be 
achieved in a single architecture state.  These include: 1) the ability to support multiple business and 
standards-use communities simultaneously and; 2) fostering the capability to “use the right tool for the 
job”, avoiding the “one size fits all” problem.  Some specific examples include: 
 

• DIS: This protocol has a comparatively low barrier to entry; it is relatively simple to learn and 
easy to use.  Also, it imposes a very low overhead.  Whenever simulation events do not 
require using more advanced architectural services (such as time management, region-based 
information filtering, and so on), DIS offers a very economical solution to the system 
intercommunication problem. 

 
• HLA:  This architecture can serve a disparate collection of simulation systems, including 

those that require advanced architectural services and those that have modest requirements.  
In addition to its large U.S. user base, it’s standing as an international standard has resulted 
in a large level of use in the coalition partner countries, facilitating combined simulation 
events that include multiple nations. 

 
• TENA:  This is a very capable architecture, offering much of the same capability as HLA, but 

based on more modern object-oriented technology.  TENA middleware is offered to 
government users as GOTS, unlike the HLA that must be purchased on a per-seat basis. 

 
• CTIA:  This architecture uses the service-oriented paradigm and is unique in that respect.  

Also, it has been designed to continue providing some level of service even in the face of 
unreliable communication networks.  It also provides advanced service capabilities while 
providing an “on-the-wire” specification (instead of an API-level standard), thus offering 
potentially improved support for multiple hardware platforms, operating systems, and 
software development languages. 

 
  In short, the existence of multiple architectures is not necessarily an undesirable outcome and, given 
some of the unique benefits, could be a desirable outcome if the architectures can be easily 
integrated. 
 
In summary, there are advantages and disadvantages associated with the number of architectures 
that are available for use.  There is no paramount advantage or disadvantage that allows one to 
immediately recognize the best possible solution.  A significant problem for the LVCAR roadmap 
effort is to navigate this trade space to arrive at an achievable solution that maximizes the benefit for 
all concerned while not exceeding the resources that will be necessary to realize that solution. 

 

1.3 Methodology 
The original specification of requirements for the LVC Architecture Roadmap effort includes as a 
deliverable: “A systems engineering analysis of alternative means to achieve LVC architecture 
interoperability or convergence, considering all relevant factors, …, and providing metrics as feasible.  
Innovative approaches shall be considered.”  As explained by the International Council on Systems 
Engineering in the INCOSE Handbook, “The basic engine for systems engineering is an iterative 
process that expands on the common sense strategy of (1) understanding a problem before you 
attempt to solve it, (2) examining alternative solutions (do not jump to a point design), and (3) verify 
that the selected solution is correct before continuing the definition activities or proceeding to the next 
problem.”1  There are many formally-established and recognized models that help engineers execute 
this process, including the various Waterfall models, the Spiral model, and well-regarded “Vee” model 
of systems development.  The common factor in each of these models is that they focus early on 
defining and documenting needs and requirements as a precursor to formal problem definition, 
development of a solution (to include the development and analysis of alternatives), and finally 
implementation and validation of the selected course of action.  The LVC Architecture Roadmap is 
                                                             
1 http://g2sebok.incose.org/app/mss/menu/index.cfm, Section 2.2.1, “INCOSE Handbook SE process Model”. 
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concerned with the first steps in this process and is not chartered to address implementation and 
validation issues. 
 
Given that “… that there is no cook-book recipe for performing systems engineering because there is 
such great diversity in the kinds of systems that are produced by the systems engineering activities 
…”2, the architecture team approach to the systems engineering process for this problem is designed 
to focus on requirements and the development of alternative solutions that meet those requirements.  
Our process is to: 1) characterize the current state; 2) define a desirable end state; 3) identify 
differences between the current and desired state and develop strategies that offer promise in 
eliminating the differences, and; 4) perform an analysis of alternatives to select the most favorable 
course of action.  Each of these steps is described more fully below.  Generally, steps 1 and 2 
correspond to the first step in the INCOSE common-sense strategy of understanding the problem.  
Similarly, the final two steps allow us to “examine the alternative solutions.” 
 
A characterization of the current state (see Section 2) has been developed based on literature 
reviews, subject-matter expert interviews, workshop interactions, survey instruments, and expert 
team input.  All of these input sources have contributed to an identification of the architectures 
currently in use, their degree of use, and a description of the types of use for each (e.g., by 
community of interest and as stand-alone resources or as part of mixed-architecture events).  
Concurrently, the characterization of the current state has also led to a definition of the current 
architectural requirements.  The study team has captured a list of key issues (“wedge issues”) which 
provide the basis for a community perception of differences between the architectures.  The current 
state characterization also includes analyses of how the requirements have been met and the actual 
incompatibilities of the architectures, stemming from the wedge issues.  Finally, the current state 
analysis has also led to a definition of likely future requirements. 
 
The vision statement (see section 3) describing the desired end state has been derived from the goal 
of establishing the seamless integration of live, virtual, and constructive systems.  The same 
information sources used to characterize the current state (e.g., survey instruments, expert team 
input, etc.) have also helped to shape this vision.  Further, the desired end state has been 
decomposed to permit a more detailed description of its associated attributes 
 
The development of alternative strategies to transition from the current state to the desired end state 
has been inspired by the INCOSE principle of “innovate by generating a wide range of alternative 
solutions to satisfy the need. (A common mistake is to converge on a "comfortable design" concept 
too early because of time constraints.)”3  Five different strategies have been proposed as potential 
solutions.  Some of the solutions in this initial set are mutually exclusive while others are more flexible 
and fully support the INCOSE principle of repeating analyses to (re) investigate the desirability of the 
alternative solutions as better data becomes available.4   Finally, a part of the alternative solution 
development has been to document a set of relative advantages and disadvantages (“pros and cons”) 
of each one. 
 

1.4 Levels of Interoperability 
Many of the known problems that impact LVC integration stem from technical incompatibilities among 
the various distributed simulation architectures.  However, achieving the goal of a truly interoperable 
LVC operating environment requires that developers consider a wide range of issues beyond the 
basic question of how to pass runtime data along the simulation network.  As examples, issues 
related to data modeling, coordinate systems, synthetic natural environment representation, and 
algorithmic consistency are frequently outside the scope of the problems that simulation architectures 

                                                             
2 http://g2sebok.incose.org/app/mss/menu/index.cfm, Section 2.2.0, “Overview” 
3 http://g2sebok.incose.org/app/mss/menu/index.cfm, Section 2.1.4.4, “Identify and Assess Alternatives so as to 
Converge on a Solution” 
4 http://g2sebok.incose.org/app/mss/menu/index.cfm, Section 2.1.2.2, “Investigate Alternatives” 
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were ever designed to address.  The consideration of such issues as part of a structured systems 
engineering methodology is critical if executions of the LVC environment are to produce valid results. 
 
The following framework is one tool useful in assessing interoperability (although others have also 
been proposed).  It identifies five basic levels of simulation interoperability, with each level building 
upon each preceding level5: 
 
Technical Interoperability (Level 1):  Physical connectivity is established, allowing bits and bytes to be 
exchanged. 
 
Syntactic Interoperability (Level 2):  Data can be exchanged in standardized formats (i.e., the same 
protocols and formats are supported. 
 
Semantic Interoperability (Level 3):  Information (data plus context) can be exchanged.  Common 
reference models define the unambiguous meaning of data. 
 
Pragmatic/Dynamic Interoperability (Level 4):  Knowledge (information plus its use and applicability) 
can be exchanged.   
 
Conceptual Interoperability (Level 5):  A common view of the world is established.  This level not only 
comprises the implemented knowledge, but also the interrelations between these elements. 
 
LVC interoperability is affected across all of these levels.  The distributed simulation architectures in 
use within the DoD today all provide services for achieving technical and syntactic interoperability 
(e.g., levels 1 and 2); however, problems with how these services interact at runtime can adversely 
affect interoperability in mixed architecture environments.  While solutions can be found to such 
problems, it is important to recognize that most practical distributed simulation applications require 
interoperability at levels above the syntactic level.  Addressing interoperability issues at the semantic 
level (and above) frequently transcends the architectures themselves, and generally involves the 
establishment of cross-community agreements and standards on such supporting resources as data, 
processes, and tools.  Thus, although the primary focus of the LVCAR is on the syntactic-level issues 
of mixed architecture integration, the general desire to reduce the technical, cost, and schedule risks 
associated with developing and operating future LVC environments also requires the consideration of 
higher-level interoperability issues.  This will be discussed later in this report. 
 

2 The Current State 
An assessment and description of the current state has been developed based on literature reviews, 
subject-matter expert interviews, workshop interactions, survey instruments, and expert team input.  
The current state attributes of interest are: 1) the architectures currently in use; 2) the requirements 
that these architectures have been designed to address; 3) differences between the implementations 
that meet those requirements, and; 4) potential future requirements.  Each of these areas is 
described in the sections that follow. 
 

2.1 Architecture Usage 
As described in the project plan, the currently employed architectures and protocols include the 
Distributed Interactive Simulation (DIS) protocol, the Aggregate-Level Simulation Protocol (ALSP), the 
High-Level Architecture (HLA), the Test and Training Enabling Architecture (TENA), and the Common 
Training and Instrumentation Architecture (CTIA).  Each of these has an established community of 
use, and the number of users is increasing in each case except ALSP (where the user base appears 

                                                             
5 Tolk, A., "Composable Missions Spaces and M&S Repositories – Applicability of Open Standards", 
Simulation Interoperability Workshop, Washington D.C., April 2004. 
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to be vanishing as users migrate to HLA).  Figure 2.1 is based on the LVCAR initial survey instrument 
completed in August 2007.  Respondents were allowed to cite use of multiple architectures; the 
percentages above are based on the total number of cited use (so that sum of all cites uses equals 
100%). Survey data shows that HLA and DIS have the largest frequency of cited use and together 
account for seventy percent of all simulation uses within the population represented by the survey 
audience.  Detailed demographic information on the survey audience is presented elsewhere in the 
LVCAR Final Report.  
 
Survey completion was a requirement to participate in the LVCAR working group.  There were 105 
respondents contributing to the data in Figure 2.1.  While not a large number, the respondents 
represented the majority of the Department of Defense simulation communities.  The “Other” category 
in the data includes several proprietary and custom-built architectures that are not generally available 
for public use.  (Note that some survey respondents cite use of multiple architectures.) 

2.2 Current Capability Requirements 
A companion LVCAR report provides greater detail on the requirements collection methodology and 
results.  This section provides a comparative presentation of the requirements collection effort, 
illustrating the degree of commonality between the various architectures and protocols.  In the tables 
that follow, entries colored green indicate a high degree of commonality, yellow indicates a moderate 
degree of commonality and red indicates significant differences in the requirements.  Note that 
definitions associated with the categories used in this comparison are provided in Appendix L 
(Definitions) of the LVCAR Interim Report. 
 
 

Requirement DIS HLA TENA CTIA ALSP 

Create a distributed 
simulation, allow 
systems to join & 

Limited. 
Simulation 

management 

Yes Yes Yes 
 

Yes 
 

 
 

Figure 2.1  Frequency of Cited Use (Percentage), by Architecture / Protocol 
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resign; provide for 
initialization and 
destruction of the 
distributed 
simulation instance 

requirements 
reflected in 
Simulation 

Management 
(SIMAN) 
Protocols 

Support publish 
and subscribe 
information 
management 
(filtering) 
 

No. However, 
the DIS 

architecture 
must support 

either multicast, 
broadcast, or 

unicast packets 

Dynamic 
 

Dynamic 
 

Dynamic 
 

Dynamic 
 

Transport Type 
 

Only supports 
best effort 
messaging 

 

Support both 
best effort and 

reliable 
messaging 

Support both best 
effort and reliable 

messaging 
 

Supports 
reliable and 
unreliable 
networks.  

UDP unicast 
and multicast 

protocols 
supported 

Supports reliable 
messaging 

Interoperate with 
HLA federations 
 

No requirement, 
although HLA 
did not exist 

when the DIS 
specifications 
were written.  
DIS gateways 

are now plentiful 

 “One of the 
primary goals of 

TENA is to 
interoperate with 
HLA simulations, 

therefore a TENA-
to-HLA gateway is 
one of the many 
gateways that is 

needed.”  See 3.6, 
“Foundation 

Initiative 2010, 
Second TENA 

Middleware 
Prototype 

Requirements 
Document” 

 

Yes - CTIA has 
a requirement 

to provide 
gateways to 
non CTIA-
compliant 

protocols and 
architectures 
such as DIS 

and HLA 
 

No requirement 
 

Support multiple 
message types 

Limited. 
Simulation 

management 
requirements 
reflected in 
Simulation 

Management 
(SIMAN) 
Protocols 

Supports 
interactions 
and state 
updates 

Supports state 
updates, single 
messages, and 
data streams 

Yes: Supports 
state updates, 

single 
messages, and 
data streams 

 

Supports state updates, 
single messages, and 

data streams 

Table 2.1a  Requirements Comparison 
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Requirement DIS HLA TENA CTIA ALSP 

Save and 
restore 
operation 
 

Yes:  Provided 
by SIMAN 
protocols 

Yes 
 

Original Requirement: “… 
middleware support for 
application save and 

restore is not necessary 
in a range context …” 

 
TENA requirements have 
been updated to reflect a 

need to provide this 
capability 

Yes: Exercise is 
continuously saved 
(all exercise data 

is logged to a 
centralized DBMS) 

 

Yes for Save.  
Spec doesn’t 

discuss 
Restore, but it 
can be safely 

assumed 
 

Region-based 
information 
management 
(filtering) 

No 
Requirement 

Yes 
 

Original Requirement: 
No. 

 
TENA requirements have 
been updated and TENA 

will be enhanced to 
provide a DDM-like 

capability with the next 
release (Nov 07) 

 

Yes: 
Discrimination by 

object class, 
attribute value / 

range, and 
geographic 

position 

Yes.  
Discrimination 
by object class, 

attribute 
value/range, 

and geographic 
location (e.g., 

play box) 

Transfer of 
ownership 

Object 
Transfer 

Attribute Transfer 
(Object transfer 

through 
privilegeToDelete 

attribute) 

Object Transfer Objects are 
centrally owned, 
but can transfer 

the right to change 
object state 

Dynamic 
attribute 
transfer 

Synchronize 
applications 

At Stop/Freeze 
points; See 

SIMAN 
protocols 

 

At any time At Initialization: “TENA 
middleware shall not be 
responsible for ensuring 
that system clocks are 

synchronized.” 

No: Only 
synchronization 

through operating 
system capabilities 

At Save points 

Global Event 
Ordering 

No.  However, 
time 

management 
options shall 
include real-
world time, 
scaled real-

world time, and 
scaled/stepped 
real-world time 

 

Both: Time-
stamped order 
and Received 

order supported 

“TENA applications need 
to be able to deal with 

Time Management 
issues only when 

connecting to simulations 
via the HLA Gateway.  
Thus, no specific time 

management 
requirements exist for the 

TENA middleware 
 

Events are time-
stamped when 

generated but may 
be delivered in 
arbitrary order.  

Subscribers must 
be capable of 

handling events 
out of order.  
However, all 

events are logged 
to the event 
database to 

preserve event 
ordering for AAR. 

Yes: always 

Specification for 
Middleware, 
Tools & Utilities 

No 
requirement 

Very Limited: RTI 
 

Yes: Data Logger, Object 
Model, Middleware, … A 

“Product Line“ 
Architecture 

 

Yes: Extensive 
“product line” 

requirements for a 
large number of 
tools & utilities 

 

Limited: ALSP 
Broadcast 
Emulator 

(ABE), ALSP 
Common 

Module (ACM), 
… 

Table 2.1b  Requirements Comparison (continued) 
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The comparative analysis in the above tables illustrates that there is a high degree of commonality 
between the architectures and protocols.  This is particularly true concerning HLA, TENA, and CTIA.  
However, there are also some key differences that have been indicated in the specifications of 
requirement for these architectures.  As an example, CTIA has a documented requirement to provide 
a persistent database of all objects; the architecture is required to support persistence of component 
identities across restarts.   Thus, all information is continually recorded in an SQL-type database.  
This requirement is different than that imposed on a data logger which records interactions sent 
across the simulation network.  CTIA is the only architecture that supports such a requirement 
(although TENA has been required to “support the local collection of data to a persistent store”).  
CTIA is also uniquely required to support continuation of exercises in cases where the transport 
network itself is unreliable. 
 
TENA has also been presented with a unique requirement that is not technical.  The TENA JORD 
states: “SW-6: the software must minimize the purchase of run-time licenses.”  This appears to be the 
only example where a purchase requirement has been expressed as an architectural requirement. 
 
The considerable amount of capability overlap (considering only major characteristics), as well as 
some of the aspects unique to each of the architectures is illustrated in Figure 2.2. 
 

Figure 2.2   Architecture Capabilities: A High-level View 

2.3 “Wedge” Issues 
“Wedge” issues are characteristics of the different architectures and protocols that result from the 
different implementations of their requirements.  These implementation characteristics are popularly 
seen as “wedges” between the architectures because they represent areas that could be barriers to 
achieving cross-architecture interoperability.  This section examines the relevant wedge issues, 
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describes the implementation choices made in the case of each architecture or protocol, and 
describes the potential to resolve incompatibilities of the wedge issues.  (See Appendix L for related 
definitions.) 

2.3.1 Wedge #1: On-the Wire or Application Program Interface 
(API) Standard 

DIS On-The-Wire: An on-the-wire protocol enforces data structure/encoding rules, and thus 
strongly facilitates syntactic interoperability.  Since the DIS community has a well-
defined set of users (real-time, platform-level only), it was believed that long-lived 
agreements on the wire protocol could be obtained. 

HLA API Standard: On-the-wire specifications can require frequent updates to account for 
technological advances in how data is transmitted.  Since HLA is an established 
standard (normally updated at five year cycles), making frequent updates would be very 
disruptive to users.  An API standard hides the details of how data transmission takes 
place, and thus allows new technologies to be integrated without affecting the core 
standard. 

TENA API Standard: On-the-wire specifications can require frequent updates to account for 
technological advances in how data is transmitted. Having to provide a new version of 
TENA every time a new data transmission technology is used would be very disruptive 
to users.  An API standard hides the details of how data transmission takes place, and 
thus allows new technologies to be integrated without affecting the core standard. 

CTIA On-The-Wire:  CTIA chose an on-the-wire specification to support development of 
components on multiple operating systems in virtually any language, without requiring a 
specific middleware solution.  This allows independent development of components for 
virtually any operating system, hardware platform and in any programming language.  
This also allows CTIA to optimize the interfaces to maximize performance over limited 
bandwidth networks (i.e. wireless). 

ALSP On-The-Wire:  ALSP chose an on-the-wire specification to avoid the need to change 
the using simulations in any way (no code changes to the federates) - this had the 
beneficial side-effect of insulating the infrastructure from the simulations - when one 
simulation failed (crashed) the communications infrastructure remained fully operational 
and could help restore the state of the failed federate when possible. 

 
There are advantages and disadvantages to both approaches.  However, translation to and from on-
the-wire standards can be handled very efficiently at the gateway level, and can be used to achieve 
interoperability between the architectures.  This wedge issue does not appear to introduce 
irreconcilable differences between the different architectures. 

2.3.2 Wedge #2: Single or Multiple Reference Frames 
DIS Single: A single coordinate system used through the connected systems can improve 

efficiency and resolve some semantic issues.  However, if transformations to the single 
in-use systems are calculated differently (e.g., using different datum) inconsistency can 
result. 

HLA Single: (same discussion as above for DIS) 
TENA Multiple: Using multiple, ‘native’ coordinate systems eases application burden and a 

single specification of the transformation method increases the probability of coordinate 
consistency.  TENA provides services from the SEDRIS Spatial Reference Model 
(SRM) to achieve coordinate transformation. 

CTIA Single: CTIA selected WGS84, Earth-Centered, Earth-Fixed reference frame, with a 
local range offset applied (to provide high precision while reducing required bandwidth).   
Components that use the CTIA Frameworks utilize the Synthetic Environment Data 
Representation and Interchange Specification (SEDRIS) coordinate conversion utilities 
to ensure consistent coordinate transformations. 

ALSP Single: A single coordinate system used through the connected systems can improve 
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efficiency and resolve some semantic issues.  However, if transformations to the single 
in-use systems are calculated differently (e.g., using different datum) inconsistency can 
result. 

 
This is a minor consideration in architecture design and requirements specification.  Either approach 
can lead to inconsistencies, depending on the implementation and the choices in the transformation 
process.  Translation to and from different coordinate systems can be handled very efficiently at the 
gateway level, and can be used to achieve interoperability between the architectures. This wedge 
issue does not appear to introduce irreconcilable differences between the different architectures. 
 

2.3.3 Wedge #3: Number of Compliance Levels 
DIS None: No compliance testing required to claim being a DIS-compliant system. 
HLA Single: Compliance for HLA federate simulations is entirely driven by the federate 

Simulation Object Model (SOM).  The SOM defines the information that the simulation 
can produce and consume, and the services it can support.  Thus, compliance testing is 
always done within the context of a simulation's SOM.  Although this means that a 
simulation can define a minimal interface and still declare itself "HLA compliant", the fact 
that its SOM reflects very minimal capabilities and thus will be unlikely to be chosen for 
a federation is a strong deterrent.  (Note that HLA also provides compliance testing for 
the RTI.) 

TENA Multiple: TENA developed several levels of compliance, all focused on the degree to 
which each simulation conforms to the rules of architecture.  By defining multiple levels, 
it is more straightforward to identify and integrate compatible simulations, and potential 
users have a greater understanding of the capabilities of a given simulation with respect 
to its ability to operate in a TENA environment. 

CTIA Multiple: CTIA defines multiple levels of compliance, all focused on the degree of 
reusability for components.  Higher levels of compliance indicate greater potential for 
reusability. 

ALSP Double: ALSP has two basic levels of "good actor" testing.  One level is to ensure 
simulations can consume (subscribe to) information as defined by the ALSP 
specification.  All ALSP actors must be able to support this for the confederation to 
operate effectively.  An additional set of compliance tests are performed on actors that 
can also publish information.  These two levels are necessary to avoid subscribe-only 
actors being submitted to unnecessary tests. 

 
This is a minor consideration in assessing architecture compatibility.  Gateways are not required 
based on the differences.  Multiple levels of compliance could be used with HLA federations, but are 
somewhat irrelevant given the absence of a standard object model.  Also note that TENA design 
requirement RM-2 states: “As TENA-compliant, the Resource Manager shall also be compliant with 
HLA and be able to manage HLA-compliant resources.” This wedge issue does not appear to 
introduce irreconcilable differences between the different architectures. 
 

2.3.4 Wedge #4: Object Model Loading - Run-time or Compile time 
DIS N/A: DIS does not have an object model 
HLA Run-time: Permits dynamic changes to the object model (Modular FOM) and does not 

require recompile subsequent to object model changes. 
TENA Compile-time: Compiler error checking is applied to the object model (e.g., data type 

consistency) so that some errors can be discovered prior to run-time integration. 
CTIA Both: The majority of the CTIA Object Model is specified at compile-time, which 

facilitates compiler error checking.  However, a portion of the CTIA Object Model is 
specified at run-time, to support flexibility, where required, in the definition of the Object 
Model for a particular range, or component. 
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ALSP Run-time: Although the ALSP object model was generally fixed, developers wanted the 
flexibility of entering an arbitrary object model at runtime rather than compiling the object 
model into their code. 

 
 
This is a minor consideration in assessing architecture compatibility and is most closely related to 
initialization procedures.  Gateways are not required based on the differences.  This is a major 
consideration in individual architecture design, having both technical and business implications, but 
this wedge issue does not appear to introduce irreconcilable differences between the different 
architectures. 

2.3.5 Wedge #5: Global Event Ordering 
DIS No:  DIS is for real-time platform-level applications where some mismatches in event 

order are tolerable due to human delays in recognizing and reacting to such 
mismatches. 

HLA Yes: HLA is a general-purpose simulation architecture that has a hard requirement to 
support both FTRT and STRT applications that require strict causal ordering of events.  
Although this is only an issue with constructive federations, there is a sufficiently large 
user base to justify that appropriate event ordering and time synchronization 
mechanisms are supported by the architecture. 

TENA No: At this time, all TENA applications are real-time, for which minor event ordering 
mismatches are tolerable. 

CTIA No: At this time, all CTIA applications are real-time, for which minor event ordering 
mismatches are tolerable.  CTIA does provide event ordering for historical queries (a 
persistent store of exercise history is included as part of the architecture) and CTIA 
supports recovery of events (i.e. due to loss of communications) with special handling. 

ALSP Yes: ALSP is a constructive, time-managed simulation environment that depends on the 
ability to accurately order events within each time step (generally one minute). 

 
This difference does not seem easily reconcilable.  Gateways can be used to change time-
management approaches as necessary, but can only time-stamp a message when that message is 
received at the gateway.  If messages become out-of-order before arriving at the gateway, the 
gateway cannot restore the correct order.  The problem can be resolved to a large degree (probably 
perfect resolution is possible) by interposing a “time-stamping” gateway between each message-
generating application and the simulation network (as opposed to the conventional use of gateways 
between different architectures).  This strategy would likely require many more gateways to be used 
than the conventional gateway-use strategy and thus could impose performance costs on the 
simulation exercise.  However, it is not impossible to resolve the differences between time-managed 
and non-time-managed architectures and this wedge issue does not appear to introduce 
irreconcilable differences between the different architectures.  Note that the architecture cannot 
resolve problems that arise based on the limitations of using simulation systems; the capabilities of 
systems that cannot respond appropriately to time-managed information will not be improved by 
changes to the architecture. 

2.3.6 Wedge #6: Standard Object Model Provided 
DIS Yes:  Although not a formally defined object model, the allowable content for data 

exchange is embedded in the standard.  Thus, any application that complies with the 
DIS standard should be able to interoperate with other DIS-compliant applications. 

HLA No:  As HLA is a general-purpose architecture, it must be flexible to support a wide 
range of users.  Thus, the design separates the data architecture from the simulation 
architecture, and simply provides a template to allow users to define their data 
exchange based on specific requirements.  In recognition of the problem associated 
with specifying a new object model for each new application, users were encouraged to 
define community-standard object models outside of the architecture.  The RPR FOM is 
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one example of this. 
TENA Yes: To facilitate interoperability among ranges, a standard TENA object model was 

developed.  Thus, if all participants use the TENA object model, a high degree of 
interoperability can be achieved.  However, the TENA architecture also allows users to 
define alternative object models that better fit their needs.  This provides a highly flexible 
"middle ground" between the options of having the data being part of the simulation 
architecture or not. 

CTIA Yes: To facilitate interoperability, independently developed components and products, 
the majority of the CTIA Object Model is provided by the architecture.  However, some 
portions of the Object Model are defined as “Flexible Features” which supports 
extensibility (by individual component developers or product integrators). 

ALSP Yes: The simulations in the ALSP confederation are known, and the exercises they 
support are all similar in nature.  Thus, it was possible to achieve incremental 
agreement on the content of a standard object model that evolved over a period of time 
and then stabilized. 

 
This is a minor consideration in assessing architecture compatibility and is most closely related to 
pre-runtime procedures.  Gateways are not required simply because of the lack of a common model 
(although gateways or some other translation mechanism will be required to support communication 
between applications using different object models).  HLA could be modified in this area by officially 
adopting a standard set of Base Object Models (BOM) that could be flexibly composed to suit multiple 
needs; this set should include models that would be compatible with the TENA standard model and 
those developed as parts of the RPR FOM effort, at a minimum.  This wedge issue does not appear 
to introduce irreconcilable differences between the different architectures. 

2.3.7 Wedge #7: Object Model Extensible 
DIS No:  Again, although the DIS data architecture does not include an object model per se, 

the Protocol Data Unit (PDU) content/structure was defined using an open standards 
process and resulted in a community consensus to meet identified needs.  However, 
changes to the PDU content/structure currently happen very infrequently, and defining 
special-purpose experimental PDU’s requires operating outside of the standard. 

HLA Yes:  Early in HLA development, the static nature of DIS PDU’s was identified as a 
significant problem.  The real world is always changing, and a flexible object model 
capable of modeling changing data without having to continuously change the 
underlying standard was designed.  The template approach used by HLA (separating 
data from the simulation architecture) provides the necessary object model extensibility.  
The Modular FOM feature developed by the HLA Evolved PDG will even provide 
runtime object model extensibility. 

TENA Yes: The need for object model flexibility and extensibility was also apparent during the 
design of TENA requirements.  TENA provides a standard object model, but 
mechanisms exist within the architecture to extend the object model with whatever new 
classes or capabilities that are required. 

CTIA Yes: Individual component developers or product integrators can extend some portions 
of the CTIA Object.  These features are defined using eXtensible Markup Language 
(XML) and are parsed at runtime by CTIA Services and components. 

ALSP Yes: The content of the ALSP object model is at the discretion of the confederation 
members.  If there is a need to extend the object model, the members can simply agree 
to adjust their interfaces accordingly. 

 
This is a minor consideration in assessing architecture compatibility and is primarily an issue when 
connecting to DIS federations (normally, the RPR FOM is used).  Gateways are not required simply 
because of the lack of extensible models in all applications (although gateways or some other 
translation mechanism will be required to support communication between applications using different 
object models).  A RPR FOM - like object model (for DIS) should also be specified to ensure 
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compatibility with the other standard object models. This wedge issue does not appear to introduce 
irreconcilable differences between the different architectures. 

2.3.8 Wedge # 8: Data Filtering Supported 
DIS No:  DIS was designed to achieve interoperability among a limited number of 

simulations where scalability is not a paramount issue.  Thus, using a broadcast 
protocol was perfectly acceptable, and filtering was simply not required.  Modern day 
DIS users sometimes use subnets to achieve some basic level of filtering, although this 
is not part of the architecture. 

HLA Yes:  Being a general-purpose protocol, very large training and experimentation 
environments were considered part of HLA's user base.  For such applications, 
scalability is critically important, and thus the architecture needed to possess 
sophisticated filtering mechanisms.  The Declaration Management services provide 
basic publish-subscribe capabilities, while the Data Distribution Management services 
allow arbitrary filtering regions to be established for any object attribute or interaction. 

TENA Yes: Scalability issues also drove TENA developers to implement publish-subscribe 
capabilities for object state information.  Currently, such services are satisfying user 
needs, and thus there hasn't been a requirement to implement additional capabilities 
(e.g., region-based filtering such as DDM) in the architecture.  A DDM-like capability has 
been expressed as a TENA requirement and this capability is planned as a very near-
term enhancement. 

CTIA Yes: The architecture supports “perfect” event and object filtering, at a cost.  The cost of 
choosing perfect filtering is in terms of performance of the (logically) central services.  
Component developers have the option of utilizing perfect filtering or performing client-
side filtering. 

ALSP Yes: Filtering for ALSP confederations occurs at both the local level (ALSP Common 
Module) and global level (ALSP Broadcast Emulator).  All filtering is based on publish-
subscribe, similar to HLA's Declaration Management services.  This provides all the 
filtering currently needed to support ALSP exercises. 

 
Different requirements for data distribution management (DDM), publish - subscribe filtering (DM), 
and broadcast approaches can be resolved using gateways. This wedge issue does not appear to 
introduce irreconcilable differences between the different architectures. 

2.3.9  Wedge #9: Reliable Transport Types 
DIS No:  DIS was designed for real-time applications only.  For real-time applications, the 

latency penalty for reliable transport is generally considered too high a price to pay, as 
occasional dropped packets in real-time human-in-the-loop environments are not 
considered much of a problem.  Thus, the User Datagram Protocol (UDP, as compared 
to the reliability provided by Transmission Control Protocol or TCP) was all that was 
required. 

HLA Yes:  For many of the constructive users of HLA, repeatability requirements require the 
use of reliable transport mechanisms.  In addition, some federation management and 
ownership management services require reliable transport.  However, since HLA also 
supports users with low latency requirements, transport can be defined as either best 
effort or reliable on an individual object attribute and interaction basis. 

TENA Yes: TENA can provide both best effort and reliable transport. 
CTIA Yes: Nearly all CTIA transport mechanism use some form of reliable transport.  Most 

forms rely on TCP to provide reliability.  Non-TCP reliable communications are also 
specified for point-to-point as well as multicast distribution of data. 

ALSP Yes: Reliable transport is all that is used in ALSP exercises.  Lost data packets would 
have a strongly negative effect on the validity of ALSP exercises. 
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This difference does not seem easily reconcilable.  Gateways can be used to ensure reliable delivery 
as necessary, but can only ensure reliability after that message is received at the gateway.  If 
messages are “lost” before arriving at the gateway, the gateway cannot resolve the problem.  The 
problem can be resolved to a large degree (probably perfect resolution is possible) by interposing a 
“message-reliability” gateway between each message-generating application and the simulation 
network (using “middleware”, as opposed to the conventional use of gateways between different 
architectures).  This strategy would allow designating messages as reliable transport type before 
those messages ever appear on the transport network.  However, the strategy would likely require 
many more gateways  (“middleware” copies) to be used than the conventional gateway-use strategy 
and could thus impose performance costs on the simulation exercise as a whole.  However, it is not 
impossible to resolve the differences here and this wedge issue does not appear to introduce 
irreconcilable differences between the different architectures. 

2.3.10 Wedge #10: Support Transfer of Ownership 
DIS No: In DIS, the simulation that created the entity owns all entity-state information.  

The need to transfer this ownership was never a part of the DIS user requirements. 
HLA Yes:  Some HLA users have expressed the requirement to dynamically transfer 

attribute ownership during execution.  For example, low-fidelity mission-level models 
may want to transfer ownership of some missile attributes to a higher-fidelity missile fly 
out model to provide a more accurate representation of endgame.  Although these 
services are not heavily used (compared to most others), HLA can support applications 
that require such services. 

TENA No: In TENA, Stateful Distributed Objects (SDOs) are instantiated by participating 
applications, who become the owners of that SDO.  That application has the exclusive 
right to publish updates of the values of the SDO's attributes.  Transferring this right to 
another application dynamically has not been necessary for the user community that 
TENA currently supports.  However, the ability to transfer ownership of objects is a 
planned TENA enhancement. 

CTIA Yes: Because CTIA is a client-server architecture, all objects are owned by the central 
services.  This allows virtually any component to change the state of any object in the 
exercise.  However, the architecture allows for components to specify the owner of 
some objects (particularly for exercise participants) and restrict/transfer ownership of 
some of the state parameters for participants. 

ALSP Yes: Reasons for attribute ownership transfer are essentially the same as for HLA.  In 
ALSP confederations, temporarily transferring ownership allows for higher fidelity 
representations to be injected at critical points in the execution. 

 
This difference seems readily reconcilable.  Each architecture allows dynamic creation and 
destruction of entities, a process that could (inelegantly, but effectively) substitute for full ownership 
transfer.  However, the difference should not impact interoperability between those architectures that 
offer support and those that do not; no gateways are required based on this difference. This wedge 
issue does not appear to introduce irreconcilable differences between the different architectures. 
 

2.3.11 Wedge #11: Data Marshalling Support 
DIS No: Data marshalling is not addressed in the DIS specification. 
HLA No (currently): Data marshalling is not addressed in the HLA specification.  Some 

commercial RTI vendors provide utilities that offer support, but this is not a requirement.  
Note that encoding helpers will be included as part of the next revision of the IEEE 
1516.1 standard, which will provide some support for data marshalling. 

TENA Yes: The TENA middleware provides for marshalling and de-marshalling of data as 
required. 

CTIA Yes: CTIA relies in the Common Data Representation (CDR) to specify marshalling for 
all objects.  The CTIA Frameworks provide utilities for marshalling objects, as do all 
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commercial CORBA implementations. 
ALSP Yes: The ALSP confederation ran on many different types of computers/operating 

systems.  To avoid marshalling problems, all data was passed as American Standard 
Code for Information Interchange (ASCII) text. 

 
There are advantages and disadvantages to both approaches.  Translation between text and binary 
or different endian representations can be handled very efficiently at the gateway level, and can be 
used to achieve interoperability between the architectures.  This could also be viewed as one case 
where business model issues have driven some architectural differences (between HLA and TENA as 
an example).  In HLA, vendors who supply this capability with their products should enjoy a 
competitive advantage, so there is no need to specify this (and other types of utilities and support 
tools) in the architecture. This wedge issue does not appear to introduce irreconcilable differences 
between the different architectures. 
 

2.3.12 Wedge #12: Requirements for Tools / Utilities 
DIS No:  The DIS standard focused on clearly necessary services to support data exchange 

in a consistent, effective manner, and left the identification and development of 
supporting tools to commercial tool vendors. 

HLA No:  The only software application that is specifically called out in the HLA specifications 
is the RTI.  The HLA program philosophy is that a supporting set of tools is very 
important, but the tools are closely tied to the process model, which is outside of the 
core architecture. 

TENA Yes: TENA defines a "product line" of supporting tools and utilities to assist users 
creating and managing logical ranges and for working with the TENA common 
infrastructure.  Since using TENA would be very difficult without these tools and utilities, 
the product line was made a core component to the overall architecture. 

CTIA Yes: CTIA defines a "product line" of supporting tools and utilities to assist users 
creating and managing exercises and ranges.  This product line is the Live Training 
Transformation (LT2) Family of Training Systems (LT2 FTS). 

ALSP No: Certain tools, such as the ALSP Control Terminal (ACT) and the Confederation 
Management Tool (CMT) are required for ALSP confederations to operate properly. 

 
This is not an issue that impacts interoperability (run-time).   This could also be viewed as one case 
where business model issues have driven architectural considerations.  As an example, in HLA, 
vendors who supply additional capability (e.g., supporting tools and utilities) with their products should 
enjoy a competitive advantage, so there is no need to specify them along with the architecture. This 
wedge issue does not appear to introduce irreconcilable differences between the different 
architectures. 
 

2.3.13 “Wedge” Issue Summary 
The different “wedge” issues reflect significant design and implementation choices that have been 
made within each of the architectures and protocols.  However, as described above, none of them 
introduce irreconcilable incompatibilities that would prevent the integration of the different 
architectures into a mixed architecture event, although achieving such integration is not without cost 
(including time, dollars, and capability).  Two of the wedge issues, dealing with global event ordering 
and reliable message transport types, are not easily reconciled and the solution proposed above 
could have accompanying performance degradations.  Some experimentation is required to establish 
the technical implications and associated costs.   
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2.4 Projected Future Requirements 
The survey instrument, use case analyses, and workshop discussions have been used to posit an 
estimate of likely future requirements.  This list of future requirements has not been the product of a 
formal requirements generation process, which introduces some limitations.   However, while the list 
presented here cannot be viewed as exhaustive, it is useful to assess the potential of each of the 
existing architectures and protocols to meet future needs.  For each projected future requirement, a 
table below provides the requirement definition, the importance of the area addressed by the 
requirement, and a synopsis of the problems that could arise if the requirement remains unsatisfied. 
 

2.4.1 Improved Quality of Service (QoS) 
Defined Quality of Service can provide different priority to different users or data flows, or 

guarantee a certain level of performance (delivery reliability and timeliness) to a 
data flow in accordance with requests from the application program 

Importance Repeatability can’t be achieved without reliability of messaging 
Problems Dropped packets, Delay, Jitter, Out-of-order delivery, Corrupted / misdirected 

packets and receiver discovery; Reliability leads to potential latency and network 
loading 

 
It will probably be a future requirement for all architectures to provide reliable transport and other 
advanced QoS mechanisms when required by user applications.  CTIA appears to have the most 
robust capability in this area, as that architecture is charged with providing reliable service even when 
faced with unreliable networks. 

2.4.2 Fault Tolerance 
Defined A characteristic of a system allowing it to continue to operate, possibly at a 

reduced level, rather than failing completely, when some part of the system fails. 
Importance A large and costly simulation event fails when someone in the router room trips 

over a wall plug … 
Problems Faults can’t be exhaustively pre-defined.  Major fault categories include simulation 

system failure or network resource failure. 
 
While much of the fault-tolerance behaviors and capabilities must reside in the applications (the 
simulation systems themselves), there are some architectural capabilities that could help provide 
improved fault tolerance.  These include providing for application redundancy, automatic resign, 
polling, providing more robust fault detection and resolution mechanisms, monitoring and notification 
capabilities.  These strategies should be architecture-independent and transferable across 
architectures. 

2.4.3 Information Assurance 
Defined A product or technology that provides important security services (e.g. 

identification, authentication, confidentiality, integrity, availability, anti-spoofing, …) 
as an associated feature of its intended operating purpose. 

Importance Imagine the world without any level of information assurance … (banking, national 
security, commerce, …). 

Problems DoD information technology (IT) system information assurance requirements 
apply but are not always addressed by simulation systems  (DoD Instruction 
8500.2 requirements for qualification as a “net-centric” system). 

 
Much of the information assurance requirement is being met today, however inelegantly.  Better 
solutions, more tailored to the exact requirement seem possible for the future.  However, there are 
processes that allow the current architectures and protocols to meet the associated requirements. 
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2.4.4 Interface to GIG 
Defined The Global Information Grid (GIG) is the globally interconnected, end-to-end set 

of information capabilities, processes, and personnel for collecting, processing, 
storing, disseminating, and managing information on demand. The GIG includes 
all owned and leased communications and computing systems and services, 
software, system data, security services, and other associated services. 

Importance Interfacing simulations with GIG resources allows real-time data and information 
to flow into (e.g., timely initialization data) and out of (e.g., Course of Action 
Analysis (COAA)) the simulations. 

Problems Latency, validity of information, security (all the information assurance issues), 
asset availability, discovery metadata, … the role of M&S … 

 
To some degree, existing architectures can use gateways to interface with arbitrary networks now 
(potentially including GIG resources).  The role for M&S (and the GIG for that matter) is as yet 
imprecise, so major immediate advances seem premature.  However, as currently understood, the 
requirement seems achievable. 
 

2.4.5 Load Balancing 
Defined Balancing a workload among multiple resources (host computer, networks, 

gateways, …) 
Importance Repeatability or could inject faults into the system (fault tolerance improved if can 

avoid resource saturation). 
Problems Latency, system failures … 
 
Allowing asset redundancy will probably be required to redistribute loads to equivalent resources 
(network, host, gateway, …).  Providing monitors to detect situations requiring dynamic load 
balancing will also be necessary.  These requirements do not appear to be incompatible with existing 
architectures. 
 

2.4.6 Projected Future Requirements Analysis Summary 
The estimated future requirements appear to be supportable with enhancements to the existing 
architectures.  There does not seem to be any requirement that necessitates a complete redesign of 
the architectures or a new start to build a replacement (more capable) architecture. 
 

2.5 Current State Analysis Summary 
The current state includes a wide range of user communities, and different architectures and 
protocols are used across those communities.  No single architecture is dominant and, with the 
exception of ALSP, the user base of all architectures appears to be increasing (although at different 
rates).  The above review of stated requirements, wedge issues, and likely future requirements shows 
that the existing architectures have much in common and, more importantly, do not have 
irreconcilable differences. 
 
There are other important aspects of the current state.  Many of the problems that are barriers to 
interoperability have been described above in the sections stating the problem and discussing the 
tradeoffs between having a single, universal architecture and multiple, more purpose-specific 
architectures.  Finally, community perceptions about the current state are described in a following 
section (Assertions).   (While these community perceptions presented in the Assertions section 
clearly describe characteristics of the current state, they are also important in helping to define the 
best way forward.   Thus, the Assertions discussion in this report is placed immediately preceding the 
Initial Strategy Assessment section.) 
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In short summary, the current state where multiple architectures and protocols exist and are used 
simultaneously has both advantages and disadvantages.  Chief among the disadvantages is that the 
integration effort to conduct mixed-architecture events (and attendant costs) is very high.  Integration 
can be achieved, but the process could be greatly improved. 
 

3 Defining the Desired End State 
The problem definition and requirements analyses allow a succinct vision statement describing the 
desired end state that should be achieved by applying the strategy outlined in the LVC architectural 
roadmap.  Future actions should ultimately provide the simulation communities with a single (either 
conceptually or physically) architecture that provides established levels of service in each DoD 
context of use and will allow valid interactions between user systems.   The several implied 
requirements in this statement require some further development. 

3.1 Conceptually or Physically Single Architecture 
As argued above, striving to achieve a single physical architecture implementation that can be 
universally applied is not necessarily the correct outcome for this effort.   However, if multiple 
architecture implementations are to exist in the future, it is desirable to reach a state where the 
existing architectures are so easily integrated that they can be viewed as a single “architecture of 
architectures”, conceptually a single resource.  Thus, the desired end state is agnostic on the number 
of different architectures or protocols that exist, but does express a requirement that they are, at a 
minimum, conceptually a single architecture. 
 

3.2 Established Levels of Service 
The goal state should, at a minimum, provide all the necessary services that are currently available.  
There should be no degradation of performance or capability as compared to the current capability. 
 

3.3 Each DoD Context of Use 
The goal state must serve as a universal resource.  No existing community of users should be 
abandoned, regardless of their number. 
 

3.4 Allow Valid Interactions 
Any system, simulation or otherwise, that uses the architecture’s service should be assured that their 
interactions will be valid at the syntactic level.  This includes, in the case of a conceptually single 
architecture, interactions between systems that utilize physically different architectures. 
 

4 Candidate Strategies 
The strategy for transitioning from the "as is" state of simulation interoperability for LVC environments 
to the desired end state described in Section 3 involves many complex technical, business, and 
cultural factors.  While the selection of the optimal near- and long-term strategy for LVC 
interoperability will require a thorough analysis of these factors, it is important to first identify the set of 
potential strategies that could serve as the basis for roadmap development.  The strategies) 
described below represent a LVCAR-participant consensus of the possible high-level approaches to 
addressing LVC interoperability issues from which a roadmap of lower-level actions and activities can 
be derived.  In addition to the strategies themselves, a short discussion of the primary advantages 
and disadvantages of each (from the architectural perspective) is provided. 
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4.1 Strategy 1:  Maintain the Status Quo 
In this strategy, no specific actions are taken to unify the current distributed simulation architectures.  
This can be thought of as the "natural selection" or “distributed, uncoordinated management” 
strategy, which recognizes that the various architectures will evolve as needed to meet the future 
needs of each user base, and that when mixed architecture environments are required, the current 
(but admittedly ad hoc, inefficient, and decentralized) approach of using gateways and bridges will 
eventually become good enough to meet future needs.  Architectures that do not continue to meet 
user needs in a cost-appropriate manner will eventually die off with no direct intervention necessary. 
 
Primary advantages: 
 
 There is no disruption to existing architecture users. 

 No additional investment needed beyond that which the individual architecture sponsor already 
provides. 

 
 
Primary disadvantages: 
 
 Known technical/schedule/cost risks for mixed architecture applications will continue indefinitely. 

 Possible duplication of effort during normal evolution of the architectures. 

 Further divergence among the architectures is likely. 

 Additional architectures may be created that would compete with those now available. 
 

4.2 Strategy 2:  Enhance Interoperability of Mixed-Architecture 
Events 

In this Strategy, the focus is to create solutions to improve the interoperation of existing architectures 
in a mixed-architecture environment.  Examples of such solutions include establishing standard 
agreements (e.g., processes, terminology, object models) that cut across the various architectures 
and improving the performance, reliability and (re) usability of future gateways and bridges.  The 
individual architectures would evolve to support their native user communities, but oversight would be 
provided to discourage divergence and duplication of effort.  Unlike the approaches that focus on 
creating an end state that includes only a single architecture, this Strategy assumes that there is 
benefit in having multiple architectures available for use, that the benefit is worth the dollar cost in 
maintaining different architectures, and that the interoperability problems caused by the need to mix 
the different architectures can be resolved. 
 
Primary advantages:        
 

 User community requirements continue to be met based on the normal evolution of the 
architectures. 

 Allows users to choose from a diverse set of architectural capabilities. 

 Does not impose a "one size fits all" solution. 

 Actively improves interoperability while providing no disruption to existing architecture users. 

 Multiple architectures will spur competition between providers and likely lead to more rapid 
innovation. 

 Benefits can be achieved incrementally. 
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 Oversight Board provides a mechanism to arrest the continued development of new 
architectures.   

 
Primary disadvantages:     
 

 Cross-architecture integration will still be required for mixed-architecture events. 

 Funding will be necessary to maintain potentially overlapping capabilities. 
 

4.3 Strategy 3:  Encourage and Facilitate Architecture 
Convergence 

This Strategy is very similar to the preceding strategy, with the exception that policy actions and 
investment incentives would be added to cause the architectures to converge either into a single 
architecture or into a set of compatible and interoperable architectures.  Thus, while the same 
roadmap actions would be taken with regard to improving both model and runtime interoperability in 
the near-mid term, this strategy would include additional actions as necessary to achieve some 
appropriate level of architecture convergence (including the potential for physical convergence) at a 
specified future date.  
 
Primary advantages:        
 

 Multiple architectures will compete to be the “convergence target”, fostering competition 
between providers and likely leading to more rapid innovation. 

 Needed architectural changes are phased-in to avoid user community disruptions. 

 Benefits can be achieved incrementally. 

 Eliminates much of the complexity of mixed architecture environments in the long-term if 
physical convergence can be achieved. 

 
Primary disadvantages:  
 

 Possible disruption to users, in that the final actions to achieve convergence may be 
unacceptable to existing architecture users.   

 Requires that hard choices be made regarding several technical and business model issues, 
which may provide disincentives for affected users to transition. 

 
 Uncertainty about the degree of convergence that can be achieved results in a potential for 

failure and poor ROI 
 

4.4 Strategy 4:  Select One of the Existing Architectures 
In this strategy, an evaluation of how well existing individual architectures would satisfy all identified 
requirements (including projected future requirements) would be conducted, and the architecture that 
represents the "closest fit" to future needs will be chosen as the foundation of a single future 
architecture for LVC.  Actions at that point will focus on adding (hopefully reusing from other 
architectures) features and capabilities needed by users that do not currently employ the chosen 
architecture, and institute policy and financial incentives to convince affected users to transition. 
 
Primary advantages:        
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 The end state is a single architecture, which eliminates the risk and additional resource 
consumption inherent to mixed architecture environments.   

 Reuse of existing architecture capabilities reduces cost relative to a new start. 

 
Primary disadvantages:    
 

 Significant disruption to users of non-select architectures.   

 Eliminates the ability for users to consider and choose among multiple architectures for the 
one that best suits their needs (i.e., "one size fits all" problem). 

 Despite policy and other incentives, users may decide to keep using their existing 
architecture if they feel it is more appropriate for their needs (i.e., this strategy has a relatively 
high risk of failure).  

 

4.5 Strategy 5:  Develop a New Architecture 
In this strategy, an entirely new architecture would be developed based on current and future 
requirements for LVC environments.  While reuse of the best ideas and implementations from existing 
architectures would be encouraged where appropriate, this strategy is intended to be a new start to 
incorporate emerging technologies and modern design paradigms into the baseline architecture 
structure rather than retrofitting such ideas into existing architecture(s).  Policy and financial 
incentives will be used to spur adoption of the new architecture. 
 
Primary advantages:        
 

 The end state is a single architecture, which eliminates the risk and additional resource 
consumption inherent to mixed architecture environments.  

 The resulting product should provide the most advanced long-term LVC capability. 

 The architecture can be developed from the beginning with an understanding of current 
problems and future needs (i.e., not retrofitting solutions into an existing framework). 

 
Primary disadvantages:       
 

 Significant disruption to users of all existing architectures.  

 The more general an architecture, the less powerful it is for solving specific problems - "one-
size-fits-all" architecture may not work well for many users.   

 Users may refuse to transition to the new architecture despite establishment of policy and/or 
incentives (high risk of failure).   

 Requires largest up-front investment of all strategies (note: long-term costs may be reduced if 
some architectures can be replaced / retired). 

 
The advantages and disadvantages of the various strategies described in this section provide some 
basis for describing those that are best suited to meet the near and long-term needs of the LVC 
community at large.  In addition, general observations regarding how LVC environments are being 
developed and deployed in support of current applications can be used to evaluate the suitability of 
each strategy.  This information is provided in Section 5 of this report.  Collectively, this data is used 
to provide an assessment of these five strategies in Section 6, to explain the basis for eliminating 
some strategies before completing more detailed analyses.   
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5 Assertions 
The potential strategies identified in Section 4 define a set of alternatives to transition from the current 
"as is" state as described in Section 2 to the desired "to be" state as described in Section 3.  While all 
strategies have the same basic long-term goals, they will all differ in terms of their implementation.  
That is, they all vary in terms of their technical implementation strategy, time to implement, business 
model approach, required standards, and level of investment.  The selection of a preferred strategy 
(as a prerequisite to defining the LVC Architecture Roadmap) will need to consider all of these 
factors.  Quantitative characterizations of the strategies, by subcomponent, are provided in the main 
LVCAR report.  However, there are also other more qualitative factors that must be considered to 
produce a completely informed decision.  These factors (or assertions) represent practical 
considerations regarding the application of distributed simulation architectures within the LVC 
community today, and are considered factual by the communities represented on the LVCAR effort.  
The list of assertions below (in italics) is also accompanied by a discussion of potential future impact 
and a supporting rationale. 
 

 Much can be accomplished with the architectures that are available today and nearly all of 
the existing architectures are being improved to better serve their communities of use.  The 
various distributed simulation architectures in use within the DoD today have all been 
designed to meet the needs of one or more user communities.  With few exceptions, these 
architectures have continued to evolve and mature based on changing user requirements.  
Although the different architectures have different strategies and procedures for managing 
this evolution (as well as different funding streams, which in turn affects the pace by which 
the architectures continue to evolve), members of the various user communities seem to be 
generally satisfied with the features and capabilities provided or planned to be provided by 
their architecture of choice.  The existence of multiple architectures allows users to select the 
architecture that best meets their needs and thus provides an incentive for architecture 
developers and maintainers to competitively keep pace with technology and stay closely 
engaged with emerging user requirements.   Further, at least two factors provide evidence 
that users are interested in having their native architecture serve their future needs as well: 1) 
user groups exist to advocate architecture evolution and; 2) standing lists of future 
architectural enhancements are being implemented in some cases. 

 
 The Department of Defense has not always taken and is not currently using a consistent, 

coherent approach to managing LVC environments.  The DoD has sponsored programs to 
build individual architectures (e.g., HLA, TENA) and has remained engaged in the activities to 
standardize and improve existing architectures on an individual-architecture basis.  However, 
the current situation does not include a centralized, Department-level effort (or responsible 
organization) charged with managing or even influencing the coherent, compatible 
development of the architectures as a set of complementary capabilities.  Today, each 
architecture is left to develop capabilities “on their own”, primarily influenced by the 
expressed needs of their constituent communities.  While this approach is able to respond to 
stated user-community interests, it suffers from limitations that become most apparent when 
the various architectures must be integrated to support a mixed-architecture need.  There is 
currently no enterprise-wide incentive for user communities to enhance LVC interoperability 
or events that include mixed architectures. 

 
 The number of available architectures has increased since the early 1990’s, at least partially, 

as a result of inadequate management.  Each of the ALSP, DIS, HLA, TENA, and CTIA 
architectures has been constructed as a reaction to some perceived shortcoming (actual or 
otherwise) in the set of available architectures.   HLA, in particular, was intended to replace 
the other architectures existing at the time the HLA project was started.  However, none of 
these architectures has fallen into complete disuse; all still have some community of use.  
More effective management may have prevented the new starts for TENA and CTIA, given 
their technological similarity with HLA.  Better management may have also led to the 
complete retirement of DIS and ALSP after HLA became widely available for use.  Instead, 
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experience shows that a new architecture, even though technologically advanced and fully 
capable compared to its contemporaries, will not necessarily replace those architectures.  In 
each case, we have seen that the creation of a new architecture has simply added one more 
architecture to the set of those available for use. 

 
 Mixed architecture environments occur as dictated by needs of the application, not because 

of any inherent benefit in mixing architectures.  It is well known that mixing multiple 
distributed simulation architectures within the same M&S environment will generally result in 
additional cost. In cases other than reuse of previously established simulation 
intercommunication mechanisms (e.g., gateways and bridges), the attendant problems 
usually require considerable resources to resolve successfully.  Thus, it would seem that 
developers would strive to avoid having to mix architectures whenever possible.  The 
problem is that the interfaces of the simulation applications that are chosen (assumed to be 
based on their functional capabilities) to participate in a distributed simulation event are 
generally designed only for the distributed simulation architecture the simulation application 
most frequently uses.  As examples, real-time platform-level simulations normally rely on a 
DIS interface, simulations that can run either faster or slower than real-time will normally 
utilize an HLA interface, and simulations that frequently interact with live range assets will 
normally use a TENA interface.  Providing simulation applications with interfaces to multiple 
distributed simulation architectures is usually seen as cost prohibitive.  Thus, working in 
mixed architecture environments through gateways or other means of cross-architecture 
communication is often viewed as a more practical strategy.  

 
 When mixing architectures is necessary, point solutions to bridging the architectures work in 

most cases where syntactic interoperability is the main concern, although these kinds of 
solutions may introduce additional latency and information loss for some applications.  As 
stated in the previous discussion, ad hoc workarounds that allow simulations with varying 
distributed simulation architecture interfaces to operate coherently at runtime can be resource 
intensive and are not always reusable from application to application.   As a result, the 
number of implemented intercommunication mechanisms continues to increase, even though 
they are often little more than re-invented solutions to very similar, previously solved 
problems.  This inefficiency is one of the several problems that the LVC Architecture 
Roadmap effort was established to solve.  However, it is important to note that in the majority 
of virtual and constructive uses, the operational requirements of the exercise / experiment 
itself were at least partially (and in most cases fully) met with the workarounds that were put 
into place.  The primary takeaway from this observation is that there do not appear to be any 
large capability gaps in today's distributed simulation architectures that prevent important 
constructive and virtual simulation exercise/experiment objectives from being met.  However, 
reducing the technical, cost, and schedule risks inherent in applying and integrating the 
capabilities provided by today's architectures by defining and implementing mechanisms for 
improved cross-architecture interoperability is an area where improvements are necessary, 
particularly as pertains to the integration of live assets. 

 
 Mixed architecture approaches may introduce certain limitations on the range of services 

available to participants within the full simulation environment.  When multiple architectures 
are used in the same event, the differences in the capabilities they offer are often resolved by 
allowing participating systems to use only those capabilities that are common to all 
architectures.  As an example, suppose that one group of simulation systems typically 
federate using HLA and that another group of simulation systems typically interact using the 
DIS protocol.  When these two groups of systems must interact across the HLA – DIS 
boundary, typically using an HLA – DIS gateway, the full set of capabilities in HLA cannot be 
used throughout the entire set of simulation applications because not all of the HLA 
capabilities are available in the DIS protocol.  A gateway can be constructed to provide some 
or all of the HLA-only services to the HLA federates (from the gateway forward), but there is 
no guarantee that the capabilities can be used on the DIS side of the gateway.     
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 Many legacy, and even some new, simulations will not transition to using a different 
architecture, unless there are compelling incentives to do so.  It is often very difficult to modify 
legacy systems to use a new architecture.  In the past, transitioning a legacy system to a 
newly available architecture has not always been cost-effective; it has frequently proven 
much more advantageous to simply provide a gateway linking the legacy system to the new 
architecture.  Recent history shows that a gateway solution to legacy system integration 
generally provides an acceptable level of performance. There is nothing in view that will alter 
this observation. 

 
 GOTS-based and COTS-based business approaches are difficult to reconcile within the 

scope of a single product.  Today's distributed simulation architectures have different 
strategies for the business aspects of their operation.  Some (like DIS and HLA) use a 
commercial business model, where a reputable external standards organization maintains the 
core specifications, and commercial enterprises develop and market tools that support 
implementations of the specifications.  Others (like TENA) use a government business model, 
where a government oversight group maintains the specifications and the government also 
sponsors the development of supporting tools and other resources that are freely available to 
approved users.  Each of these approaches has certain desirable and undesirable aspects.  
Proponents of the current architectures considered these factors along with the needs of their 
user communities, and made an informed selection of a business model to best meet their 
perceived needs.  Future directions that include merging the architectures, or development of 
a (replacement) single LVC architecture must also find ways to transition the multiple 
business model state of the current situation.  The problem is that the users of the discarded 
business model will either: 1) suddenly have to pay for resources that they never had to 
before (GOTS -> COTS) or; 2) will have to throw away working solutions to adopt alternatives 
that they may consider to be inferior (COTS-> GOTS).  In this latter case, there is also the 
issue of what happens to the commercial vendors that previously supported the original 
architecture.  The point here is that if there is only one architecture, then there will be 
significant issues associated with how to choose the one preferred business-model approach 
(e.g., pure COTS, pure GOTS, enterprise-wide site licenses, or a hybrid approach mixing 
COTS and GOTS across the architecture’s middleware, tools, and utilities.) and how to 
transition users to the new model.  Note that the current situation, where multiple 
architectures exist simultaneously, allows both COTS and GOTS options to exist at the same 
time, although this may be accompanied by increased cost to both the user communities and 
the DoD. 

 
 Cultural and resource issues will be persistent barriers to convincing existing architecture 

users to switch to a different architecture.  When organizations decide on a preferred 
distributed simulation architecture (based on the types of applications they generally 
participate in), they tend to invest considerable amounts of time and money in establishing 
the necessary infrastructure to support their architecture choice.  As an example, 
organizations will invest in automated tools to streamline the necessary activities to employ 
that architecture effectively and efficiently, and invest training dollars to create "experts" in the 
use of that architecture.  These types of investments generally pay off, in that the resulting 
M&S environments are usually effective in meeting sponsor requirements.  Suppose a new, 
“better” architecture alternative is presented to the manager of an established M&S 
environment.  If the architecture that the facility currently uses is meeting their sponsor's 
requirements, what is the incentive for that manager to throw away a working solution and 
adopt something entirely new?  From the manager's perspective, all this does is force an 
expenditure of valuable resources to transition from something known to work well to 
something that may not work well, thus increasing perceived risk. The point is that the 
promise of a technically advanced solution will not be an adequate incentive for the larger 
M&S community to transition to a new LVC architecture.  Even provided with additional 
incentives, transitions may not occur due perceived risk or schedule impact.  Also, it is 
unclear if providing adequate incentives is even feasible since users may insist on direct 
funding to pay all the transition costs (new tools, new training, help-desk support, etc.).  Such 
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funding may be difficult to obtain given the constrained resources and competing priorities of 
the DoD.  Convincing user communities to consider longer-term return on investment in lieu 
of short-term cost or cultural issues, combined with convincing management and business 
cases, will be keys to overcoming the barriers. 

 
 Architectural choices of how to transfer data between applications (syntactic issues) and 

application-level choices of how to interpret received and encode transmitted data (semantic 
issues) both have impacts on interoperability.  Efforts on the LVC Roadmap to date have 
focused on improving the way LVC assets interact at the syntactic level.  However, even if 
the perfect solution to runtime (i.e., syntactic) interaction could be defined and implemented, 
true interoperability could not be obtained if representational differences (i.e.. semantic) exist 
among the various LVC components.  As an example, if there was only one fully integrated, 
highly robust runtime architecture, or if there were "perfect" gateways that could eliminate any 
barriers to inter-architecture communication, the runtime aspects of achieving interoperability 
would effectively be addressed.  However, perfect receipt and transmission of the data 
moved through the architecture’s communications mechanisms cannot ensure interoperability 
in its fullest sense.  Differences in the way entity behaviors or capabilities (e.g., weapon 
ranges) are implemented across the distributed architecture, or differences in the various 
representations of the same battlefield environment (e.g. covered and concealed positions) 
can easily result in unfair advantages for some systems.   An outside observer may not be 
able to detect associated problems (since the data may have been passed around just fine), 
but in reality, the inconsistent treatment of shared representations might have been 
invalidating the whole exercise/experiment.  Most of those connected to this study seem to 
agree that the syntactic, runtime interoperability issues are relatively minor compared to the 
tougher semantic issues.  There is consensus that agreement on architectural issues is a 
necessary but not sufficient precondition to achieving full interoperability.  There is also 
consensus that resolving some of the tough, semantic issues has considerable value 
because this is also a necessary condition to solving the interoperability problem. 

 
 Significant improvements in LVC interoperability can also be achieved via supporting data, 

tool, and process standards.  In a similar theme to the preceding assertion, there are many 
actions that can be taken to improve LVC interoperability that have little to do with defining 
the runtime architecture.  Many of these involve the development of standards.  As an 
example, agreements on shared object model representations are good candidates for data 
standards, as are agreements on environmental data exchange and system/subsystem 
characteristics for building supporting databases.  Tool standards are also important, as 
identifying requirements for and then providing either COTS or GOTS tools for common 
design/development functions reduces workload and increases the likelihood of effective data 
interchange.  Common standards for tools can also help resolve some of the system 
integration issues that impact LVC events. Agreements on process standards also improve 
the ability for disparate user communities to work together in mixed architecture 
environments toward common goals. 

 
 There is a need to recognize and account for longer-term trends (e.g., the widely-held 

perceptions about the advantages of SOA) in the LVC Roadmap.  Most current distributed 
simulation architectures (i.e., ALSP, DIS, HLA, and TENA) are designed to be peer-to-peer, 
not service-oriented.  There are several good reasons for this, including the need for peer-to-
peer, low-latency interactions and the relative immaturity of supporting technologies (like web 
services).  However, the fact that SOA is currently inappropriate for most existing distributed 
simulation applications does not mean that some or all of the advantages SOA offers will 
forever be beyond incorporation into simulation architectures.  Supporting technologies will 
continue to advance, as will the definition and implementation of net-centric services.  
Although it is hard to predict where SOA will go, and what function M&S will eventually play 
on the GIG, there is a persistent need to monitor future trends to ensure that the LVC 
architecture can and will evolve to provide appropriate support for future training exercises 
and analytic experiments.  That is, we expect that there will be a need for simulations to 
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interact with other systems, such as decision support systems, which have been designed for 
use with service-oriented architectures. 

 
In summary, the currently available architectures are generally meeting the primary needs of their 
constituent communities today and are evolving to meet future needs as well.  History shows that the 
number of available architectures tends to increase over time and that once a community of use 
develops around an architecture, that architecture is very likely to continue to be used.   By definition, 
the inter-architecture communication problem only occurs during mixed-architecture events.  While 
these are currently a small percentage of the number of all DoD simulation exercises, the current 
emphasis on L, V, C integration is likely to increase the number of mixed architecture events.  These 
mixed-architecture events occur based on the needs of the applications in the event, not because of a 
desire to mix the advantages of different architectures.  Mixed-architecture events can be effectively 
used, based on point solutions for the intercommunication problem.  There is a common belief that 
having only one architecture would lessen the interoperability problem.  However, in addition to the 
many difficulties in moving from the current situation to one of a single architecture, there is 
considerable evidence that significant aspects of the interoperability issues (e.g., semantic issues) 
are apart from the architecture.  These issues involve how the shared data is interpreted between 
participants, not how the data is shared. 
 

6 Initial Strategy Assessment 
Sections 4 and 5 introduced many relevant factors that should be considered when determining the 
path forward for LVC interoperability.  A thorough analysis of these factors for all of the strategy 
options is a rather large undertaking, in that the applicability, prioritization, weighting, and scoring of 
each relevant factor is context dependent (i.e., dependent on the nature of the strategy itself).  Early 
elimination of any strategies that clearly appear to be "undesirable" before the more thorough 
analysis is initiated is desirable. The purpose of this section is to describe the basis for early 
elimination of some strategies. 
 
The initial strategy assessment involved the evaluation of the various qualitative factors and other 
more practical considerations discussed earlier in this report.  This resulted in a set of 
recommendations that were presented to the LVCAR Expert Team.  The Expert Team identified 
several issues related to the prioritization and weighting of these factors, as well as the need to 
consider additional factors in the assessment.  The discussion and resolution of these issues resulted 
in a revised set of recommendations, which reflected the consensus position of the Study and Expert 
Teams.  These revised recommendations were presented to the study sponsor, resulting in a 
decision to eliminate 3 of the 5 initial strategies. 
 
The first, most basic architecture strategy is Strategy 1, "Maintain the Status Quo.”  The major 
concern with respect to this strategy is that the current inefficiencies and excessive integration and 
resource requirements inherent in today’s mixed architecture environments are intolerable even in the 
present, and the natural divergence of existing architectures will continue to degrade the situation.  
Clearly, this strategy does nothing to improve the current situation, by definition.  Thus, there has 
been a broad consensus within the LVC community that the roadmap must include (at a minimum) 
some direct, immediate intervention to eliminate this divergence, and to create more robust near-term 
solutions to known interoperability problems.  The status quo offers none of these benefits and is thus 
not considered to be a viable recommendation as either a near- or a long-term solution.  This strategy 
has been eliminated from further analysis. 
 
Strategy 5, "Develop a New Architecture", suffers from the impracticality of its implementation, at 
least in the near-term.  Most who work in the distributed M&S community have experienced the clear 
failure of policy mandates and, based on that experience, are convinced the similar tactics are 
unlikely to work in the future. Further, incentives to users of existing architectures to transition will be 
ineffective if the users believe that their existing architecture solution is already fully meeting their 
needs (which most do).  Developing a new architecture to replace the existing ones will more likely 
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result in another architecture being added to the existing set; history indicates that few, if any, 
architectures will be retired as the new one comes on-line.  Thus, the combination of potentially high 
up-front costs, long development time, and (currently) weak justification for an entirely new LVC 
architecture effectively eliminates this strategy as a viable near-term solution.  Note that this strategy 
may be justifiable (and even desirable) in the longer-term based on evolving user needs, significant 
technology advances, and the potential that the community may eventually evolve toward this 
strategy if other selected strategies are not sufficiently meeting user requirements in the future.   At 
this time, development of a new architecture has been eliminated from further consideration as a 
possible recommendation. 
 
Strategy 4, "Select One of the Existing Architectures”, suffers from many of the same issues as the 
"Develop a New Architecture" Strategy.  That is, users of existing architectures seem to be generally 
satisfied with them, and significant investments have already been made in supporting infrastructure.  
The users of architectures that were not the “one selected” would be asked to switch to an 
architecture that they may have already rejected or otherwise deemed to be cost ineffective.  Thus, 
there would likely be significant resistance to migrating to an externally-designated architecture when 
that migration would require new investments (e.g., software, personnel training, supporting 
infrastructure) and may not work as well as their current architecture within their domain.  Short of a 
policy mandate (which has historically shown to be ineffective), an orderly transition is unlikely to 
happen.  Thus, while this strategy could become a natural outgrowth of the "Encourage and Facilitate 
Architecture Convergence" Strategy, simply choosing an existing architecture and compelling other 
architecture users to migrate is considered to be impractical, ineffective, and unworkable as a near-
term solution.   This strategy has been eliminated from further consideration. 
 
Having eliminated these three strategies from further consideration, only Strategy 2 (“Enhance 
Interoperability of Mixed-Architecture Events”) and Strategy 3 (“Encourage and Facilitate Architecture 
Convergence”) remain as viable candidates for further evaluation.  Based on analyses to date, these 
two strategies appear to be the most promising for several reasons.  Principally, they lack the 
impracticality of the other strategies while still providing needed improvements in LVC interoperability.  
Both are designed to prevent continued architecture divergence, and both provide sufficient flexibility 
to allow mid-term course corrections if evolving user requirements suggest a deviation.  Both Strategy 
2 and Strategy 3 could readily branch to either Strategy 4 or Strategy 5, or to each other, as the most 
desirable long-term course.  In addition, both provide for the existence of an oversight body that will 
have vision over all of the separate groups that currently manage and evolve the existing 
architectures.   
 
While Strategy 2 and Strategy 3 are very similar in these respects, they also have some fundamental 
differences.  As stated above, Strategy 2 is primarily focused on improving mechanisms that will 
reduce the difficulties and costs of integrating multiple architectures.  Thus, there is a recognition that 
there is value in allowing multiple, partially redundant architectures to exist.  However, as discussed 
earlier in this report, there are several inherent problems with a multi-architecture state.  Strategy 2 
recognizes these problems, but rests on the assumptions that: 1) many of the problems can be 
remedied by architecture-independent actions such as specification of standard, component-based 
object models, creation of reusable interface capabilities (gateways, bridges, etc.), and the other 
kinds of actions described above; 2) problems that remain are acceptable, given the benefits of 
allowing the user communities to determine and act on their own needs without centralized direction; 
3) multiple architectures provide the best support for matching the right tool to the right task, and; 4) 
truly redundant, unnecessary architectures will be retired by market forces as increased use of LVC 
integrated events focuses user community need evaluations on the value of enterprise-wide 
standardization.  Another unique aspect of Strategy 2 is that, while it requires the existence of an 
oversight body, that body does not have to be able to exert strong control over the disparate user 
communities.   Oversight in this case is intended to help identify potential opportunities for greater 
cooperation and resource sharing among the various user communities, and to identify possible 
actions that could prevent divergence.  The oversight body would then make appropriate 
recommendations to the user communities involved.  However, the user communities will make final 
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determinations of actions based on the recommendations.  In effect, priority will be given to the user-
community evaluation of needs rather than to the enterprise-wide recommendation.  
  
Strategy 3 differs from Strategy 2 in the method of addressing the multi-architecture problem, the role 
of the oversight body, and in the primacy of effort.  First, Strategy 3 takes the view that the many 
problems inherent in allowing redundant architectural capability to exist clearly outweigh the 
associated benefits.  The existence of multiple architectures is a problem that must and shall be 
resolved.  Gradual convergence of the architectures is a viable strategy to resolve the problem.  As 
an example, if two architectures are so common in their capabilities that there is little, if any, 
significant technical difference between them, then those two architectures should be gradually 
converged into a single architecture.  Similarly, if the complete set of technical capabilities offered by 
one architecture is a subset of the capabilities provided by another, the “smaller” architecture should 
be gradually converged into the larger one.  Thus, Strategy 3 seeks to manage gradual convergence 
of the entire set of architectures where appropriate.  Eventually, the convergence process could result 
in either a single architecture or a smaller set of compatible, interoperable architectures.  Managing 
convergence in this way requires an oversight body that can influence the evolution of the 
architectures, using a combination of policy, incentives, and disincentives to shape the actions taken 
by the user communities that control architecture evolution.  Finally, while Strategy 3 includes actions 
that will reduce the costs and problems that arise when integrating multiple architectures, the primacy 
of effort is given to achieving convergence of the existing architectures. 
 
Analyses of high-level advantages and disadvantages, and consideration of the qualitative factors 
based on community observations and derived assertions have not been sufficient to determine 
which of these two strategies is clearly preferable.  At this point, a more detailed description of the 
strategies is necessary.  It is important to note however that even if more detailed analyses lead to 
the determination that architecture convergence is desirable as a mid- or long-term goal, current LVC 
interoperability problems require solutions that are much more near-term than can be provided solely 
by Strategy 3 convergence activities. Thus, the recommended technical approach to achieving defined LVC 
objectives includes some elements of both Strategy 2 and Strategy 3, in effect producing a blended strategy 
that includes the most desirable components of both.  The most desirable outcome will be capable of 
addressing near-term needs as well as setting the conditions for long-term improvements in the 
Department’s simulation interoperability position.  Some recommended activities are designed to 
address issues particular to specific architectures, while others will be outside (but supportive) of the 
architectures.  As examples, issues such as how to bridge live RF-based communications into IP-
based simulation networks, how to bridge multiple security domains, and how to generate simulated 
voice and video that is sufficiently realistic to inject into live systems all represent runtime issues that 
will need to be researched and viable solutions developed if live, virtual, and simulated forces are to 
interact seamlessly in future environments.  Potential solutions to such issues should be viewed as 
Risk-Reduction Investigations (RRI below) that can be developed and completed as part of an 
independent research program early in the implementation of the LVC recommended strategy.  The 
feasibility of these solutions, as well as the feasibility of various convergence options, can be tested 
through focused experimentation and the most promising solutions integrated into the longer-term 
LVC architecture design.   
 

7 Strategic Agility: Preserving Options is Desirable 
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User community willingness to exploit the opportunities made available by implementation of the 
selected strategy will be a key to success in any case.  Similarly, architecture proponents must be 
willing to accept the strategy as a desirable way forward.  Consequently, several “human factors” 
issues can determine the ultimate success or failure of either strategy.  The impact of these factors is 
notoriously difficult to accurately predict, so ensuring that the selected strategy includes the agility 
necessary to adapt to changing cultural situations is very desirable, if not completely necessary.  
Further, the technical feasibility of some activities necessary to fully implement either strategy will not 
be fully assured without the completion of detailed experiments and studies that can compare 
performance of various implementation options.  As an example, Section 2 notes that gateways could 
be used to functionally overcome many of the problems implied by the Wedge Issues.  Section 2 also 
mentions that there could be associated performance degradations.  Thus, some experiments will be 
necessary to assess the true impact on performance (throughput, latency, etc.) before the use of 
gateways as a solution can be fully validated.  Similarly, some service areas appear to be fully 
suitable for convergence across the architectures.  This cannot be fully assessed until prototype 
implementations can be subjected to performance studies.  As a result, both human factors issues 
and performance issues introduce uncertainties at the time when a strategy must be selected.  The 
best defense in this situation is to preserve strategic agility.  The most desirable strategy will not only 
be able to react to a changing environment, but will also be able to react in a way that minimizes or 
precludes wasting resources. 
 

 
 

Figure 7.1  Strategy 3: Time, RRI, & Potential Course Correction Options 
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As briefly described in Section 6, Strategy 2 and Strategy 3 both include sufficient flexibility to make 
mid-course corrections (branches) if necessary.  Figure 7.1 portrays this flexibility as course branches 
that could occur sometime after a decision point in the far-near-term.  Note that the Risk-Reduction 
Investigations (RRI), as integral components of both Strategy 2 and Strategy 3, should have been 
completed by this point and some of the results from those investigations may be useful in assessing 
the utility of possible branches.  However, the primary determinants for selecting mid-course 
corrections will be the success of executing the strategy and the unfolding potential for increased 
success in other strategies. 
 
As an example, suppose that Strategy 3 (“Encourage and Facilitate Architecture Convergence”) is 
selected and initially implemented as the best way forward, as illustrated in Figure 7.1.  The first 
activities necessary to implement Strategy 3 require completing the activities identified as the RRI 
and (in parallel) establishing the oversight necessary to achieve convergence.  If, after some period of 
execution, it appears that convergence is not achievable for some reason (e.g., entrenched transition 
resistance in the user communities, unwillingness of the architecture proponents to implement 
changes, or the ineffectiveness of centralized direction) and the Strategy 3 execution appears to be 
failing, it would be possible to make a mid-course correction to adopt Strategy 2 (“Enhance 
Interoperability of Mixed-Architecture Events”) as a compatible strategy that depends less on user 
willingness to transition, proponent willingness to converge, and the effectiveness of a strong, 
centralized oversight body.   Conversely, if the user communities are accepting transition, but new 
technologies have become available, it would be possible to branch to Strategy 5 (“Develop A New 
Architecture”) to leverage relevant technology advances.  If transition has been accepted and 
convergence has succeeded to the point that only a single architecture remains as the resource used 
within DoD, switching to Strategy 4 (“Select One of the Existing Architectures”) is a natural result.  If 
some degree of transition and convergence succeeds, but a set of architectures (i.e., more than one) 
remains in use, then no branching is necessary (the goal state remains as specified in Strategy 3).  
Very similar branching options are possible if Strategy 2 is executed as the selected way forward, as 
illustrated in Figure 7.2. 

 
 

Figure 7.2  Strategy 2: Time, RRI, & Potential Course Correction Options 
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8 General Problems for LVC Events 
As indicated in LVCAR survey responses, expert team opinion, and discussions at the LVCAR 
workshops, many of the problems encountered during the preparation for and conduct of mixed-
architecture simulation events are recurrent in nature.  While some of the low-level, technical issues 
that must be resolved to complete specific simulation events can be unique to that event, there is a 
high degree of similarity in the general nature of the problems between events.  The general 
problems span activities including design, reconciliation, execution & test, and some of the problems 
can be thought of as more overarching, in that they have an impact in all of these areas.  Collectively, 
they represent the areas that should be addressed by activities designed to enhance the 
interoperability of systems during mixed architecture events. 
 
The design category includes a set of problems, all of which influence the design of the simulation 
event and which typically require some resolution before an integration event can be conducted.  The 
problems that could be categorized in this group include: 
 

• Different communities use different systems engineering models and, as a result, when 
representatives of these different communities must cooperate to produce a mixed-
architecture event, differences in process and terminology result in confusion and delay.  
Essentially, the different systems engineering processes have to be correlated so that the 
process of designing the event can proceed. 

• Because the different architectures and protocols cannot communicate directly, some type of 
translation resource must be identified or created.  Typically, many of the same kinds of 
resources (gateways, bridges, etc) must be constructed to support each exercise.  These 
resources are usually cost-constrained to be point solutions with little effort expended to 
improve their potential for reuse. 

• Systems that have been built to rely on and use one architecture will not operate on another 
architecture without non-trivial modifications. The impact is that event designers typically 
constrain their search for simulation systems that might participate in the event to those that 
are compatible with a specific architecture, rather than incur the last-resort cost of mixing 
architectures.  In essence, the problem here is that there is no real “plug and play” capability. 

• There is some disparity in the services provided by each of the architectures (e.g., HLA 
provides time-management services while DIS does not). Typically, resolving the service 
disparity implies that only those services common to all architectures can be used across the 
entire event - these must be identified and remediation strategies developed, when required. 

 
 
The problems grouped in the reconciliation category are somewhat more specific (low-level) than 
those described above and they are more concerned with reconciling differences between groups of 
simulation systems than with design.  In some cases, they could be encountered both prior to and 
during the integration event itself.  The specific problems categorized here include: 
 

• Typically, larger simulation events are designed to connect groups of simulations that may 
have been used together in smaller events (e.g., a previously designed federation).  Each of 
these previously connected groups of systems will have already reached agreements 
between the interacting systems on system responsibilities and on the types of objects and 
interactions that would be allowed (typically included in a Federation Object Model, or FOM, 
in HLA federations as an example).  The same kinds of agreements must be decided for the 
entire set of systems that will participate in the larger event. Reconciling the previously 
reached agreements can be difficult because the different architectures use their own 
mechanisms to express and record the agreements.   Essentially, the problem is that 
federation object models must be reconciled across the different federations that will be 
brought together. 

• The different architectures have either different standard object models or no standard object 
model.  Object models must be reconciled for both syntax and semantics and this is often 
more difficult than integrating the protocols themselves. 
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• The different architectures (and different implementations of the same architecture) have 
made unique, individual decisions concerning the specification of data as it is transmitted 
among participating systems.  As a result, the data encoded using the conventions of one 
architecture cannot be decoded using the conventions of another architecture.  Thus, the 
data differences must be reconciled and represented in a translator utility that can be 
interposed between the architectures. 

 
The execute and test problem category includes issues germane to the run-time connection between 
simulation systems and the testing that must be applied to ensure data is being communicated 
correctly.  These issues include: 
 

• Legacy systems are often included in the larger events and event designers are often very 
constrained in their ability to modify such systems.  Thus these legacy systems usually have 
to rely on established communications capabilities.  Even when legacy system modification is 
possible, it is usually far more cost-effective to devise a translator than to apply a 
modification. 

• In almost all cases, there is no external testing environment where systems can prepare for 
the integration event so that almost every test has to wait until the event itself.  LVCAR 
workshop participants who have been responsible for integrating system into such events 
note that: “There is never enough integration test time with a full up and running federation.”   

• External systems (e.g., C4ISR) that will be connected to the simulation event “speak their 
own language” and much like the legacy systems, this language can only be spoken through 
the use of translators. 

 
Finally, the overarching category of problems include those that span all three of the design, 
reconciliation, and test & execution areas.  These problems include: 
 

• For the most part, there is very little incentive for the different architectures to interoperate.  
Further, there is no source of available guidance on how they could implement solutions in a 
more standardized way that would promote interoperability  

• Automated tools are not often transferable between architectures as different data formats 
are involved 

 

9 Creating Resources to Enhance Interoperability in 
Mixed-Architecture Environments 

Strategy 2, “Enhance Interoperability of Mixed-Architecture Events”, is founded on the idea that 
having multiple architectures available for use is desirable and that the best way forward is to take 
actions that can reduce or eliminate the barriers to interoperability (including the specific problems 
described above) between the existing architectures and protocols.  More specifically, this strategy 
acknowledges that the existing architectures have been created, have evolved, and are being 
maintained to meet the specific needs of their constituent communities.  Elimination of any 
architecture should only occur as a natural result of disuse.  Modification and management of the 
existing architectures is left to the owning communities as the best option to ensure meeting the 
needs of the various user communities, both throughout the DoD and among the Department’s 
coalition partners.  To resolve the interoperability problems, efforts should be directed towards 
creating and providing standard resources, such as common gateways, common componentized 
object models, and common federation agreements, which can resolve the problems identified in the 
preceding section and render integration of the multiple architectures an efficient and nearly 
transparent process.  In effect, these actions will create the perception of a single architecture that 
supports all the diverse simulation systems, even though the systems will actually be serviced by an 
“architecture of architectures”, comprised of as many different architectures and protocols as are 
required to interconnect the participating simulation systems. 
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Strategy 3, “Encourage and Facilitate Architecture Convergence”, is clearly related to the first, but 
focuses on converging services across the architectures as the primary effort.  However, the process 
of convergence will necessarily take place over an extended period of time.  Because the LVC 
interoperability problem is immediate, Strategy 3 also includes the near-term actions that form the 
basis for the Strategy 2.  That is, the same set of actions taken to reduce or eliminate the 
architecture-integration effort for mixed-architecture events are also included in Strategy 3.  Here, 
they provide: 1) an interim solution during the (possibly prolonged) period of evolutionary 
convergence and; 2) mechanisms to meet the needs of external systems, which do not use 
simulation architectures, and legacy systems, which will probably not be revised to take advantage of 
the converged services, and interface to external systems. 
 
Summing up, Strategy 2 posits that the current state of multiple, somewhat overlapping, architectural 
capabilities is useful and seeks to take actions that will make these existing architectures more easily 
integrated, without forcing modifications of the architectures themselves.  Strategy 3 recognizes the 
immediate need for creating the same set of resources to achieve interoperability, but characterizes 
those resources as interim measures that should eventually become less necessary as the existing 
architectures converge into a smaller, more compatible and easily integrated set.  Thus, the near term 
requirements for enhancing the current interoperability picture look very similar, regardless of the 
ultimate strategy.  
 
The near- to mid-term activities that could occur as parts of either strategy cover a wide range.  Some 
are useful only within the context of attempting to achieve architectural convergence.  Others involve 
resources that will reduce the effort required to achieve integration required as part of creating mixed-
architecture simulation events.  Others are useful in either undertaking.  These actions and activities 
include feasibility studies, planning efforts, implementation efforts, and capabilities analyses.  
Ultimately, the selected set of activities will constitute the course of action recommended for 
comprising in the LVCAR Roadmap.  The interoperability-enhancing activities that have been 
identified include: 
 

o Devise the common components of architecture-independent object models 
o Produce common gateways and bridges 
o Create a common, reusable federation agreement template 
o Provide an analysis of the processes and infrastructure supporting M&S asset reuse 
o Describe and document a common, architecture-independent systems engineering 

process 
o Produce and / or enable reusable development tools 
o Implement a process to maintain specifications for current and future requirements 
o Specify a resource to facilitate pre-integration systems readiness 
o Determine the feasibility of a common wire-level protocol 

 
The following sections describe each of these potential activities in more detail.  Relationships 
(potential dependencies) between them are also presented.  These relationships are used to create a 
sequence of actions that could be viewed as an initial roadmap of activities that will improve the 
current state of LVC interoperability.  (Note that Section 10 discusses the activities directly related to 
the convergence required under Strategy 3.) 
 

9.1 Common Components of Architecture-Independent Object 
Models 

Reconciling the differences between the various formats and content of the object models used in 
different M&S user communities has been recognized as a source of excessive resource 
consumption when building mixed architecture environments.  Providing a common object model, 
comprised of common components (object model building blocks, sometimes referred to as base 
object models) and including mappings to current architecture object models, would allow mixed 
architecture integration to proceed faster and easier. 
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The purpose of this task is to examine the various object modeling techniques, templates, and 
methodologies employed by different M&S communities, and determine the best long-term approach 
for reconciling inherent incompatibilities.  There are several possible strategies for achieving this 
objective.  As an example, the rationale behind existing architecture-specific metamodels can be 
explored, common areas examined, and a standardized template based on a consensus metamodel 
can be developed.  Object model reuse strategies, such as componentization approaches (e.g., Base 
Object Models) and distribution mechanisms, can also be examined, as well as opportunities for 
object model content standards and supporting reusable tools.   
 
This activity will directly address the reconciliation problem of differences between object models.  It 
will provide some help in resolving the design-area problems that preclude the applicability of the 
”plug and play” metaphor.  It will also partially address the overarching problem that there is no 
guidance on how architectures could evolve in more compatible ways. 
 
The product of this effort would be a set of object modeling standards and resources useful in quickly 
constructing and implementing object models in a mixed architecture environment.  Note that 
gateways have been developed to translate from one object modeling representation to another.  
However, such gateways are generally designed only to support very specific translations (e.g., 
RPRFOM) and represent a source of latency in the simulation system.  Eliminating the need for these 
kinds of gateways by working on the compatibility of the object models themselves is a better long-
term solution. 
 
This activity has direct influences on several other activities.  The significant influence on the 
convergence effort is explained above.  The existence of a common object model would also greatly 
simplify the efforts within several other activities.  Creating a common wire-level standard and 
common gateways and bridges will both be simpler undertakings, given the existence of a common 
object model.  Also, the creation of a pre-integration readiness capability will benefit greatly from the 
existence of a common object model. 
 

9.2 Produce Common Gateways and Bridges 
Gateways are currently the most widely used method to link disparate simulations together.  
Gateways have demonstrated an impressive range of capabilities across the simulation communities 
that employ them, such as the ability to translate between different protocols or object model 
representations and to address disparities in the services typically encountered in mixed architecture 
environments (e.g., time management, filtering, etc.).  However, most gateways are designed as point 
solutions for specific problems, and are rarely shared across user organizations.  Thus, the same 
basic capabilities tend to get developed multiple times, and programs may not even know about more 
advanced features developed by external organizations. 
 
The purpose of this task is to develop a standard set of gateways, bridges, and automatic gateway 
generator applications, along with supporting user and developer documentation.  A survey of 
gateway requirements and existing gateway capabilities and technologies will be conducted, and 
development efforts initiated in areas with capability gaps.  
 
This activity will be helpful in addressing several of the problem areas described above.  Common 
gateways could be used to allow plug and play capabilities.  They could also help resolve the 
“dumbing down” problem by incorporating the “missing” services inside the gateway.  They would 
address the reconciliation area problem by providing the inter-architecture translators as readily 
available assets.  Similarly, they would provide readily available assets to connect both legacy and 
external systems into the simulation exercise  
 
The product of this effort will be an online repository of "discoverable" simulation gateways with 
supporting documentation (including V&V information), organized by the application areas and 
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domains for which the gateways are designed. In addition to the main intent of standardizing a set of 
reusable gateways (rather than having each program/organization develop their own), there is also a 
desire to examine emerging software technologies to improve gateway robustness and performance 
(including extending services offered).  Such technologies can be used to address stated deficiencies 
as part of the overall gateway development plan.  As an example, gateways can help to resolve the 
architecture-dependent aspects of the “dumbing-down” problem for mixed architecture events 
(however, gateways cannot resolve the individual simulation system limitations that contribute to this 
problem). 
 
This effort does have relationships to other activities.  Creation of a common wire-level standard 
would reduce the translation burden typically assumed by current gateways.  Also, as noted above, 
the formulation of the convergence plan can help to prioritize the construction of common gateways 
between pairs of architectures. 
 

9.3 Create a Common, Reusable Federation Agreement Template 
Many of the issues that arise when developing distributed simulation environments require the 
establishment of agreements among all federation participants as a precursor to resolution.  While 
many of these agreements affect interoperability at the syntactic level, others affect the ability to 
interact with the semantic consistency necessary for environment executions to be considered "valid" 
(e.g., reference frames, enumerations, data dictionaries).  Currently, there is no architecture-
independent standard format or content for Federation Agreements documents.  Thus, programs 
must continuously rediscover what types of information require cross-federation agreements, and the 
lack of a standard format adversely affects the reusability of these products.  
 
The purpose of this task is to develop an architecture-independent template for establishing 
Federation Agreements, along with potential architecture-specific extensions.  Federation 
Agreements documents developed for existing programs will be examined to define content 
requirements.  In addition to content, the various formats used to capture this information will be 
examined for applicability to the larger user community.  Organized discussions across the 
community of potential users will be conducted to achieve consensus on content and format.   
 
This activity is primarily designed to address the reconciliation-area problem that arises due to 
differences between Federation Object Models (FOM).  While the activity is not designed to produce 
a standard FOM, it should produce a standardized template that would permit the FOM reconciliation 
task to proceed much more easily. 
 
The product of this effort will be an architecture-independent template for establishing Federation 
Agreements, along with potential architecture-specific extensions.  There are no influences between 
this and any other activity described here. However, any common federation agreement document 
would have to reference some of the other products (common object models, gateways, and so on). 
 

9.4 Analyze, Plan, and Implement Improvements to the Processes 
and Infrastructure Supporting M&S Asset Reuse 

The existing clearinghouse for M&S information within the DoD is the Modeling and Simulation 
Information Analysis Center (MSIAC).  The Services’ Modeling and Simulation Resource Repository 
(MSRR) are parts of the MSIAC, thus allowing a wide range of search capabilities relevant to 
developing or employing M&S applications.  However, despite the existence of this on-line service, 
estimates of utilization indicate that there are relatively few users, and the level of M&S asset reuse 
appears to be much lower than desired. 
 
The purpose of this task is to examine existing infrastructure capabilities for M&S reuse, compare 
these capabilities to the required mechanisms for sharing and reuse described in the LVC Roadmap, 
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and develop and implement a plan to ensure the appropriate discovery and distribution mechanisms 
are available in the future. The plan for discovery and distribution of reusable M&S assets must 
address more than just infrastructure.  The plan must also include processes for reuse, and address 
possible incentives to improve reuse within the Department.  This implies some analysis of what 
causes programs to "build new" rather than reuse existing capabilities, and requires that supporting 
processes and incentives address these tendencies.  The eventual product stemming from this effort 
will be an improved on-line repository that addresses the distribution aspect of all Roadmap products.   
 
This activity is designed to address the design-area problem that intercommunication and other 
required integration assets (e.g., gateways, bridges) are often built anew each time they are required. 
 
Several other activities depend on the availability of on-line repositories for distribution of its reusable 
products.  However, there are no direct influences that must be considered when conducting either 
this activity or the others that will depend on the distribution capability. 
 

9.5 Describe and Document a Common, Architecture-Independent 
Systems Engineering Process 

When the user communities of different architectures are brought together to develop a single mixed 
architecture distributed simulation environment, the differences in the development processes native 
to each user community represent a persistent barrier to effective collaboration.  That is, since these 
communities must work together toward a common goal, differences in the practices and procedures 
these communities typically use to build new simulation environments can lead to misunderstandings, 
misinterpretations, and general confusion.  This introduces risk from both the technical and schedule 
perspectives.   
 
The purpose of this task is to develop a common systems engineering process model for all users of 
distributed simulation.  Existing architecture-specific process models (e.g., IEEE 1516.3, IEEE 
1278.3, TENA ConOps) will be examined to identify the key similarities and differences, and a 
consensus-building process will be instantiated to develop the required products.  The product from 
this activity will be a common systems engineering process model that can be applied across the full 
range of DoD distributed simulation users.  Specific implementation guidance that describes how the 
common process model should be tailored to meet the needs of specific architecture users will also 
be included as part of this activity.  Finally, an Architecture User Guide will be included as an annex to 
the core document.  This guide would define a mapping between type of simulation event and the 
architecture or protocol that offers best support for that purpose. 
 
This activity is intended to directly address the design-area problems that stem from use of different 
systems engineering models.  There are no direct influences that must be considered when 
conducting this activity. 
 

9.6 Produce and Enable Production of Reusable Development 
Tools 

Every development process for distributed simulation includes many opportunities for automation.  
These opportunities exist throughout every step in the process and include utilities such as 
requirements development tools, scenario development tools, conceptual and object modeling tools, 
design tools, networking tools, testing tools, and After Action Review (AAR) tools.  In today's 
environment, there is already a wide range of tools to satisfy each functional need.  However, there is 
also a correspondingly wide range of business models that are used with these tools, including 
GOTS, COTS, and proprietary solutions.  This is a significant impediment to sharing of tools across 
programs and communities, and increases the cost associated with cross-community collaboration on 
large mixed-architecture applications.  Another key barrier to reuse of tools is that there are many 
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different formats used by the different architectures to store exercise data.  Utilizing a common data 
storage format would eliminate this barrier. 
 
The purpose of this task is to examine the various business model options associated with efficient, 
effective sharing of tool resources for DoD simulation applications, identify the most beneficial 
approach, and implement that approach in a phased, controlled fashion driven by the areas of 
greatest need. Hybrid approaches will be considered as part of the overall tools strategy.  As an 
example, for some classes of tools, a GOTS solution may be implemented which makes freeware 
implementations available to all DoD users.  For other classes of tools, DoD-wide license agreements 
may be made with commercial tool vendors to provide the software at no additional cost to approved 
users.  It may also be in the DoD's best interest to encourage a COTS solution for some tool classes, 
and focus on the development of interface standards so that the commercial tools are interoperable.    
Concurrently, the different data storage formats used across the various architectures will be 
examined to determine the feasibility of creating a set of architecture-independent formats for storage 
of classes of data.  Where feasible, a common data storage format will be created. 
 
There will be two products that result from this activity.  First, a library of cross-community reusable 
tools for LVC environment development, along with a business model for tool distribution will be 
created.  Second, a set of architecture-independent data storage formats, specified according to type 
of data and allowing the tools to operate in different architecture environments, will be described.   
These products are intended to help reduce overarching-area problems. 
 
There are some influences between this activity and two others.  First, establishing a common wire-
level protocol would greatly simplify the problem of creating a standard data storage format for some 
classes of data (such as run-time log data to be used by AAR tools).  Secondly, the degree to which 
common data formats can be designed will impact the technical convergence feasibility activity. In 
cases where no common data format can be specified, convergence of the associated architectural 
services appears less feasible.  Conversely, if some services can be converged, the convergence will 
produce a “common data format” as a by-product. 

9.7 Implement a Process to Maintain ‘Living’ Specifications of 
Current and Future Requirements 

The first phase of the LVC Architecture Roadmap effort included a “requirements capture” effort, 
which identified requirements for existing architectures along with qualitative assessments of what 
capabilities are likely to be needed in future LVC environments.  While these requirements provided 
an accurate snapshot of the capabilities that are supported by today's simulation architectures, any 
prediction of what will be required in the future is subject to error, due to uncertainties in application 
priorities and the availability of supporting technologies.  Also, this effort resulted in the only 
specification of its kind; this requirements capture effort resulted in the only comprehensive 
requirements specification for LVC integrating architectures. In addition to requirements for 
architecture functional capabilities, there is also a need to capture and maintain, as a living and 
evolving record, department-wide information detailing the costs and levels of use for the 
architectures that are currently available.  Such information would allow the informed evolution of the 
architectures, both as individual and collective resources.  Thus, the outreach necessary to generate 
program requirements for LVC environments will also include processes for capturing this additional 
type of information. 
 
The purpose of this activity is to extend and refine the existing Roadmap development efforts to 
construct a comprehensive set of current and future LVC requirements.  More specifically, this activity 
focuses on requirements generation as well as than requirements capture, and defines and 
implements a structured process for maintaining a database of evolving LVC requirements based on 
continuous feedback from LVC users.  Examples include requirements that stem from future roles for 
M&S as a dynamic GIG asset and as a resource for use in C2 operations. 
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This activity is intended to help resolve the overarching-area problem that architectures do not evolve 
in compatible ways because there is no available guidance on how such evolution might best 
proceed. 
 
There will be two primary products from this activity.  The first will be a requirements generation 
process (including the description of a supporting infrastructure that ties in closely with LVC 
management structures).  The second will be a comprehensive specification of DoD-wide 
requirements, both current and future, for LVC simulation architecture capabilities. 
 
There is no direct linkage between this activity and others in the Roadmap.  This activity would run in 
parallel with other Roadmap activities.  Note that the other Roadmap activities may produce 
requirements that would be captured as part of the requirements database. 

9.8  Specify a Resource or Capability to Facilitate Pre-integration 
Systems Readiness 

Simulation system integration into large simulation events can be a very lengthy process of error 
detection and remediation.  The attendant problems would be somewhat reduced if individual or small 
numbers of simulation systems could be more fully tested for integration readiness prior to integration 
into the actual exercise event. 
 
The purpose of this activity is to investigate the feasibility of test integration resources, including such 
capabilities as establishing reusable simulation exercises that include multiple systems using all of 
the architectures that are currently used in DoD events.  Such a resource would necessarily be built 
to allow join and resign by individual simulation systems over existing networks.  The joining systems 
(e.g., the systems under test) would be required to originate and receive interactions to and from 
simulation systems residing on a variety of architectures.  This activity is intended to help reduce the 
time required to complete the integration cycle, thus addressing a problem in the execute & test 
problem group. 
 
The product of this activity will include recommendations on the feasibility of constructing resources 
or capabilities, as exemplified above, which could be used to assess (and improve) individual 
systems’ readiness for integration into specific events.  When a particular capability is found to be 
feasible, an implementation plan for that capability will also be provided. 
 
The results from other activities will influence the feasibility of constructing the pre-integration 
readiness resource described here.  The existence of common object models, common wire-level 
standards, and common gateways and bridges will all contribute to the feasibility of this effort. 

9.9  Determine the Feasibility of a Common Wire-Level Protocol 
and a Common API 

For those architectures that include an API standard, the wire protocol for intercommunication with 
other simulations is embodied in the middleware, and thus is completely opaque to most users.  
However, if the wire protocols used by different middleware applications are different, it is impossible 
for the middleware applications to interoperate at runtime unless appropriate bridges or gateways are 
put into place.  These translation utilities represent a potential source of error, consume valuable 
program resources to develop and integrate, and add complexity to the architecture of the M&S 
environment. 
 
The architectures that include an API could also be studied to determine if a “common API” is 
feasible.  That is, there could be a higher-level API, with its own specification of function calls that 
could ultimately be translated into the calls defined in either the TENA or HLA API.  Use of such an 
API, in a simulation application, would permit compilation to either of the target architectures (HLA or 
TENA). 
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The purpose of this activity is to examine the feasibility of developing a common wire protocol across 
different architectures and a common (higher-level) API for TENA and HLA.  In the case of HLA, it 
would also involve determining the feasibility of a common wire protocol and API for different versions 
of the RTI (e.g., RTI-S, HLA 1.3 RTIs and HLA 1516 RTIs).  The activity would include an 
examination of the different wire protocols and API in use today, and identifying and resolving the 
various technical, business, and standards issues involved with achieving the necessary consensus 
agreements across the various architecture developers.  Note that, in addition to feasibility, this effort 
should also address some of the desirability aspects of the problem.  That is, it may be that both a 
common wire protocol and API are technically feasible and could be implemented from both a 
business and standards sense, but it still may not be desirable to pursue either one, either for cultural 
reasons or for reasons related to the potential impact on commercial developers. 
 
The product of this effort will be a report that either specifies the common wire protocol and or API, or 
provides the reasons why such products are not achievable.  If either a common wire protocol or a 
common API could be established, it would help resolve many of the problems described in the 
previous section.  These include the lack of a “plug and play” capability, the need for translators 
between architectures, and the difficulties associated with integrating legacy systems.  If 
implemented, these common resources should be viewed as a resource that could be used, not as 
one that must be used in all cases.  
 
As with other efforts that are designed to establish feasibility, this effort should be conducted as early 
in the Roadmap as possible.  The outcome of this effort would impact several of the other candidate 
Roadmap activities.  As already noted above, a common wire-level protocol would facilitate the 
development of common, reusable tools and utilities, the development of a pre-integration readiness 
capability.  The availability of either product would also simplify the problem of creating common 
gateways and bridges.  Finally, any failure to create either of these resources, particularly the 
common wire protocol, based on technical infeasibility should also be considered when assessing the 
technical feasibility of converging the architecture capabilities and services.  Also note that a separate 
activity will be required to implement the protocol, if feasibility is established. 
 

10 Convergence: Activities and Options 
Strategy 3, “Encourage and Facilitate Architecture Convergence”, is clearly related to Strategy 2, as 
described above.  However, there are also profound differences that set it apart.  This strategy rests 
on the fundamental cost-avoidance concept that the current set of architectures and protocols 
includes significant overlapping capability and that the differences associated with the 
implementations of these overlapping capabilities should be reduced whenever possible.  Thus, this 
strategy focuses on convergence, a managed process defined as: 
 
“A process intended to reduce the incompatibilities between competing simulation architecture 
implementations.  Convergence relates to both the types of services offered by different architectures 
and the way similar services are implemented within the architectures.  Convergence may or may not 
lead to a physical merging of architectures, depending on business considerations and the desires of 
the affected user communities.” 
 
In this strategy, the existing architectures will be converged by modifying those architectures that now 
provide similar services so that they actually provide the same service.  As an example, HLA, DIS, 
TENA, and CTIA all provide some information filtering capability to serve the common goal of 
reducing both network loading and the message receipt burden of participating simulation systems.  
While these architectures and protocols offer similar information filtering services designed to meet 
similar goals, the exact services provided differ, sometimes resulting in the need to take specific 
measures to integrate the architectures as resources within a single event.  However, if at least some 
of the architectures and protocols could be modified to provide the same services for information 
filtering, the attendant integration problems would be largely eliminated.  The “information filtering” 
capability is only a single example of the several areas where convergent modifications to the 
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different architectures could be applied, all aimed at reducing the meaningful differences between 
them.  In effect, convergence would be applied as an evolutionary process that could eventually result 
in a smaller set of more compatible architectures.  In the limit, if full convergence could be achieved, 
all of the existing architectures would become so similar that they would effectively become a single 
architecture. 
 
Altering the ways in which fundamental architectural services are provided to achieve a common 
implementation across several architectures is a technically demanding undertaking.  The difficulty of 
this task should not be underestimated and a significant amount of up-front analysis and design 
needs to occur prior to applying modifications to any of the architectures.  Modifications should only 
be applied when they do not change the fundamental nature of the architecture itself and when the 
modifications can be made in a way consistent with the other services provided by that architecture.  
As examples, any attempt to add reliable messaging to the DIS protocol would require very 
fundamental changes to its basic nature and probably decrease its primary value of simplicity while 
providing basic functionality.  Similarly, attempts to uniformly provide TENA’s Remote Method 
Invocation (RMI) capability in the HLA architecture conflicts with the partial object orientation of the 
latter and could thus collide with other HLA services.  These kinds of decisions can only be made 
after prototypes have been subjected to experimentation that can inform a very detailed and technical 
evaluation and analysis.  As a result, two activities (similar to those described in Section 9) are 
necessary prior to undertaking steps towards full convergence.  These are: 
 

o Determine technical feasibility of converging specific services 
o Design a plan for convergence  

 
These additional activities, described in the following sections, are intended to perform evaluative 
analyses of the more problematic areas that could be convergence targets.  We also note that there 
are some areas that are not problematic and where even rudimentary analyses indicate that 
convergence is a viable option.  As an example, the activity related to standard object models 
(described in Section 9) is an activity that does not require a feasibility estimate, but will help to 
converge the related architectures.  Other potential areas, where the desirability of convergence 
seems relatively clear exist as well. These are also discussed in sections that follow. 
 

10.1 Activity: Convergence Technical Feasibility Determination 
Technical discussions within the LVCAR Study and Expert Teams have resulted in a general 
consensus that some degree of architecture convergence would benefit future users of LVC 
environments.  However, while the general goal of convergence is considered desirable, there are 
many questions regarding the technical feasibility of converging architectures that are presently 
unanswered, as exemplified above.  Such questions need to be addressed prior to making significant 
investments in the implementation of a convergence strategy. 
 
The purpose of this activity is to examine the technical issues related to architecture convergence, 
including an assessment of existing architectures to identify candidates for convergence, and an 
assessment of the implementations of the various architecture services to determine exactly how and 
where to target convergence activities.  This latter assessment will require some amount of active 
experimentation to determine where the "seams" in the architectures are, and how to best address 
them.  The result of this activity will be a report that describes the technical risks associated with 
architecture convergence, and if and how these risks could be mitigated.    
 
Based on the initial assessment of potential convergence targets, the result of this activity is very 
likely to indicate that more than a single LVC architecture will remain in use in the long-term.  Initial 
analyses indicate that some of the existing architectures have fundamental differences that do not 
lend themselves to complete convergence (as exemplified above), in the sense that they can 
effectively merge into a single architecture.  However, for those architectures, even a partial 
convergence of services can result in improved long-term interoperability, and is still a desirable goal.      



 

 
 

50 

 
The several service areas that have already been identified as potential targets for convergence 
include: 1) the transport type offered by each architecture; 2) the type of information filtering provided 
by each architecture; 3) the ownership transfer capabilities provided by each architecture; and 4) the 
event ordering capability provided by each architecture.  The convergence technical feasibility 
analyses will initially focus on these three potential areas for convergence.  In addition to these three 
areas, several other relevant activities (as described in Section 9) could also serve as general 
interoperability improvements, regardless of related attempts to converge the architectures.   These 
activities include: 1) creation of common object model components; 2) specification of a wire-level 
standard; and 3) creating common data formats (included as part of the Creating Reusable Tools and 
Utilities activity).  These three activities are not specifically included as parts of the convergence 
technical feasibility activity only because they will be examined independently.  However, each of 
them has a direct influence on the degree to which convergence can be achieved. 
 
The convergence technical feasibility analysis is clearly linked to several of the other candidate 
activities.  First and foremost, the result of this effort will determine whether or not any further 
convergence effort takes place (impacts activities “create a plan to achieve convergence” and  
“implement the convergence plan”).  Also, as described above, the results of the common 
components of object models, wire-level standard, and common data format (discussed under the 
topic of Reusable Tools and Utilities) activities influence this activity.  
 

10.2 Activity: Architecture Convergence Plan 
The LVC Roadmap will be composed of a time-sequenced series of studies and activities that 
together implement the core set of objectives identified in the chosen strategy to improve LVC 
interoperability.  However, the Roadmap is primarily focused on near-term activities, by design.  The 
rationale, aside from the obvious unpredictability of LVC requirements and supporting technologies in 
the longer-term, is that the longer-term LVC architecture evolution strategy depends heavily on the 
results of Risk Reduction Investigations (RRI).  As an example, if the RRI results are positive with 
respect to convergence, post-RRI activities will mainly focus on the implementation of convergence 
enablers.  However, if the RRI results suggest that the risks associated with an architecture 
convergence strategy are prohibitive, post-RRI activities are likely to focus on addressing and 
resolving both technical and cost issues and risks in mixed architecture LVC environments.   
 
The purpose of Architecture Convergence Plan task is to extend and refine the LVC Architecture 
Roadmap based on the results of the RRI.  The RRI results will allow for a more detailed description 
of the post-RRI path forward, including schedule and cost requirements.    The result of this activity 
will be a revision of the LVC Architecture Roadmap that incorporates the lessons learned from the 
RRI.  This revision will result in additional detail in the post-RRI activity descriptions.  However, this 
activity is not intended to produce a major redirection, but rather a tailoring of mid to long-term 
activities to account for risk mitigation strategies identified in the RRI tasks. 
 
Development of the architecture convergence plan is dependent on the result of several other 
activities.  Clearly, the technical convergence feasibility will directly influence the conduct of this 
activity.  (Also note that the results of the common object model, wire-level protocol standard, and 
standard data formats efforts will help to determine technical feasibility of convergence efforts, so all 
will transitively impact this activity.)  There will also be linkages between this activity and the activity 
that produces common gateways and bridges.  When convergence can be planned for two (or more) 
architectures, then the need for gateways and bridges between those architectures becomes far less 
pressing.  However, if the feasibility estimate or convergence plan eliminates some pairs of 
architectures from the convergence effort, then the need for bridges and / or gateways between those 
architectures assumes great importance. 
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10.3 Initial Assessment of Convergence Targets 
The list of capabilities required of each architecture (see Section 2.2) is the logical area to start 
examining the convergence feasibility question.  An initial estimate of the potential convergence that 
could be achieved in each of these areas is provided below and these estimates should serve as the 
initial guidance necessary to complete the Convergence Technical Feasibility estimate as described 
in Section 10.1.  Several other factors that are also relevant: 
 

• ALSP no longer has a significant user base and the small base that currently exists is 
diminishing on its own.  In the current situation, influencing convergent change for ALSP is 
not really necessary or worthwhile. 

• We can assume that HLA, DIS, TENA, and CTIA can be influenced to change for 
convergence purposes: 

o The government still has direct funding influence over TENA and CTIA; barriers here 
are convincing the architecture owners to effect convergent changes 

o HLA can be influenced through the standards modification process (similar to the 
recent HLA-evolved 1516 revisions)  - revision may not be rapid and there is some 
risk that desired revision may not be approved 

o DIS changes can be managed through SISO; much as in the HLA case, certainty and 
pace of desired change are both areas of risk. 

• Any changes to effect convergence will also have to account for backwards compatibility. 
• Convergence plans must also account for: 

o Multiple versions of the RTI (e.g., RTI 1.3, RTI-S, Different vendor versions, and 
1516) 

o Proprietary solutions to the architecture problem – how can these be integrated into 
federations? 

• Federations must also be considered – we also need some focus on enabling  “federations to 
converge”, not just on creating converged architectures 

• Several of the previously-described activities are also relevant to convergence.  These 
include the activity to create common components of object models, the activity to create a 
common on-the-wire protocol, and the activity to create standard data formats. Progress in 
each of this area would also help to converge the associated architectures.  (Also note that 
these areas are not discussed again in the sections below on assessing the feasibility of 
converging capability requirements.) 

• While some improvements can be made (e.g., common object model components, wire-level 
communication standard, standard data formats, etc.), there is limited opportunity to fully 
converge DIS with the others (HLA, TENA, CTIA) – the required changes to DIS would 
change its fundamental nature, making it far less useful for its community of users.  Thus, the 
DIS protocol cannot be subsumed through convergence and it should continue to provide 
service much as it does today. 

 

10.3.1 Required Capability Area: Publish and Subscribe Information 
Filtering 

The DIS protocol only supports the delivery of “packets” of information, which can be sent as either 
unicast, multicast, or broadcast messages.  Modification of the DIS protocol to include a publish and 
subscribe capability does not seem feasible; such a change would very likely alter the fundamental 
nature of DIS and make it much less attractive to those who now use it.  Convergence between HLA, 
TENA, and CTIA appears feasible as all three of these architectures currently provide a dynamic 
publish and subscribe filtering capability.   However, capability can easily be provided using 
gateways, without (probably) more expensive architectural modifications.  There may be some issues 
with the types of filtering provided (e.g., TENA supports filtering by objects, but not by object attribute 
which is provided by HLA).  In sum, this is an area where convergence between TENA, HLA, and 
CTIA appears feasible, if not cost effective. 
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10.3.2 Required Capability Area: Transport Types 
The DIS protocol only supports “best effort” delivery of messages. HLA, TENA, and CTIA all provide 
both best effort and reliable messages.  Modification of the DIS protocol to include a reliable message 
delivery does not seem feasible; such a change would very likely alter the fundamental nature of DIS 
and make it much less attractive to those who now use it.  Convergence between HLA, TENA, and 
CTIA appears feasible.   Some modifications to TENA to allow the simultaneous existence of multiple 
message types within the same simulation event (i.e., so that a single message delivery type is not 
the global policy) would be desirable.  It is as yet unclear whether or not HLA and TENA need to 
provide support for unreliable networks (as is required of CTIA) as part of the convergence 
implementation.  If the goal is to create equivalent architectural resources, where one could take the 
place of another, then HLA and TENA should be enhanced with support for unreliable networks. 

10.3.3 Required Capability Area: Interoperate with Other Protocols 
The TENA explicit requirement to “interoperate with HLA federations” is typically met using a TENA – 
HLA gateway.  CTIA is required to provide gateways to non-CTIA compliant protocols (such as DIS 
and HLA).  HLA is required to interoperate with other HLA federations.  Gateways can be used with 
each of the existing architectures and protocols, and there is really nothing here that needs to be 
considered as part of the convergence feasibility analyses. 

10.3.4 Required Capability Area: Multiple Message Types 
DIS supports multiple types of protocol data units (PDU) as messages.  HLA supports interactions 
and state updates.  Both TENA and CTIA support state updates, single messages, and data streams.  
HLA recognizes the need for transmitting data streams and allows these to be transmitted “outside” of 
the RTI, although data streams are not included in the standard HLA message types.  In this 
capability area, convergence is probably best supported through modifications to the various object 
models.  Assuming that approach, there is little else that needs to be accomplished. 

10.3.5 Required Capability Area: Support Save and Restore 
Operations 

All of the architectures provide (or have a requirement to provide) a save and restore capability.  
However, this does not appear to be a fruitful area for convergence due the many differences in the 
applications involved, the limited use of the capability (normally, this type of capability is only used 
once per exercise, at system initialization), and the likely cost of associated modifications. 

10.3.6 Required Capability Area: Support Region-based Information 
Management (filtering) 

DIS has no capability in this area and, again, DIS modifications to provide this type of service seem 
inappropriate.  Both HLA (through Data Distribution Management or DDM) and CTIA provide 
capabilities to filter information based on geographic position.  TENA does not currently support this 
capability, but has a requirement to provide this enhancement.  Aside from DIS, this is an excellent 
area for HLA, CTIA, and TENA to converge on providing compatible services, particularly since the 
TENA capability has yet to be implemented.  Providing a slightly  “relaxed” version of the HLA DDM 
capability (i.e., do not insist on perfect filtering) would be an appropriate service for HLA, TENA, and 
CTIA. 

10.3.7 Required Capability Area: Support Ownership Transfer 
HLA, DIS, TENA, and CTIA all support some capability to transfer ownership from one simulation 
application to another.  There are some differences between their implementations that will require 
modification to achieve convergence in that HLA allows transfer of object attributes while TENA and 
CTIA support transfer of complete objects.  Both complete objects and object attributes should be 
transferable in the converged capability. 
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10.3.8 Required Capability Area: Support Application 
Synchronization 

This capability should be examined as part of the analysis of how best to converge the save and 
restore capability requirements. 

10.3.9 Required Capability Area: Global Event Ordering 
DIS, HLA, TENA, and CTIA have all taken different approaches to the time stamping applied to 
messages (as described in Section 2.2).  This does appear to be an area where some level of 
convergence is achievable and desirable.  However, we note that none of the architectures will be 
able to improve the performance of simulation systems that are not engineered to respond 
appropriately when presented with out-of-order messages.  So, while this is an area where capability 
convergence is applicable, the root of the interoperability problems lie with using simulations systems, 
not with the architectures, and a converged capability to a provide consistent global event ordering 
capability has limited value. 
 

10.4  Summary: Initial Estimate of Feasible Areas for Architecture 
Convergence  

Table 10.1 summarizes the capability areas where convergence appears to be viable.  This table 
includes areas covered in the discussion presented above and in Section 9.  The information filtering 
category in intended to include both publish and subscribe filtering and region-based filtering, as 
discussed above.  Table 10.1 shows that there is some potential for convergence between all 4 
architectures but that DIS has the most limited potential for convergence without risking loss of its 
fundamental advantages. 
 
 DIS HLA TENA CTIA 
Transport Types No Yes Yes Yes 
Information Filtering No Yes Yes Yes 
Transfer of Ownership Yes Yes Yes Yes 
Global Event Ordering No Yes Yes Yes 
On-the-wire Standard Yes Yes Yes Yes 
Common Components of Object Models Yes Yes Yes Yes 
Standard Data Formats Yes Yes Yes Yes 

Table 10.1  Initial Estimate of Potential Areas for Capability Convergence 
 
 

11 Enabling Interoperability Now and Positioning for a 
Degree of Architecture Convergence in the Future 

The activities described in Section 9 will improve interoperability in mixed architecture events as soon 
as the associated resources can be made available.  Some of these activities lead directly to 
converged architectural capabilities, primarily regarding HLA, TENA, and CTIA.  (It is much less 
desirable to seek a high degree of convergence for DIS because adding the necessary services to 
that protocol would effectively undermine the advantage it now enjoys; it currently provides the 
essential intercommunication services without adding excessive user burdens or complexity.)  Other 
potential convergence areas will require evolutionary development, and should only be initiated after 
a complete program of experimentation and evaluation.  If all of the capabilities listed in Table 10.1 
are ultimately selected for convergence, they would also serve to improve the mixed architecture 
integration problem by reducing the potential burdens that would be placed on gateways (e.g., if all 
architectures could provide the same global event ordering capability, the related burden to be 
assumed by gateways would be greatly reduced).  That is, all of the capabilities indicated in Table 
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10.1 could also be thought as individual interoperability-enhancing activities, in addition to those 
discussed in Section 9.  Clearly, there is a somewhat artificial distinction between Strategies 2 and 3 
when both are viewed at the technical implementation level.  Some interoperability-enhancing 
activities required as components of Strategy 2 lead to convergence as required by Strategy 3.  Some 
of the likely capabilities that could be converged under Strategy 3 will also enhance interoperability 
during mixed-architecture events, the focus of Strategy 2. 
 

11.1  Graphical Representation of Activities and Influences 
Figure111.1 provides an initial representation of the actions that may eventually be included in the 
LVCAR Roadmap of recommended activities.  In Figure 11.1, actions are spatially arranged to show 
the influences (as described above) between them; activities (influencing activities) that will have one 
or more results that will impact another activity point to that activity (the influenced activity).  This 
representation illustrates the temporal relationships between the activities that derive from technical 
considerations: no influenced activity can conclude prior to the start of all its influencing activities. 
 
Note that Figure 11.1 includes both the interoperability–enhancing activities discussed in Section 9 
and the convergence studies discussed in Section 10.  Not only are these categories of activities 
similar at the technical level as described above) but they also have some relationships at the 
dependency level.  Thus, this picture illustrates a blended strategy, where promising parts of both 
Strategy 2 and Strategy 3 are related, showing those activities that will influence others and the 
activities that are influenced by others.  
 
Figure 11.1 does not attempt to illustrate the time duration, sequencing, or the relative importance to 
the community, for each of the activities.  A suggested sequencing, where those tasks having the 
highest potential benefit are sequenced first, is included in figure 11.2.  (This arrangement of tasks 
abides by the dependency relationships illustrated in figure 11.1.) 
 
 

 
 

Figure 11.1. Roadmap Activity Relationships and Influences 
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11.2 A More Complete Interoperability Problem 
The current status of LVC interoperability is fragile and subject to several reoccurring problems that 
must be resolved (often anew) whenever live, virtual or constructive simulation systems are to be 
components in a mixed-architecture simulation event.  Some of the attendant problems stem from 
simulation system capability limitations and other system-to-system incompatibilities.  Other types of 
problems arise from the general failure to provide a framework that could help achieve more complete 
semantic-level interoperability between disparate systems.  While these two classes of problems are 
ubiquitous and often lead to run-time interoperability failures, the LVCAR effort is chartered to 
address a third category of LVC interoperability problems; these are the interoperability barriers that 
can be traced to the differences between the architectures and protocols that support the simulation 
system interactions in mixed-architecture events.  While the actions described above can help resolve 
this third class of incompatibilities, it is important to understand that changes to the architectures will 
do little to resolve problems in the other two areas.  There is little to be done, short of re-engineering, 
to improve the inconsistent capabilities between simulation systems.  A supporting 
intercommunications architecture cannot change fundamental simulation system behavior.  There is 
however, much that can be done to improve the semantic interoperability situation.  While most 
improvements are not directly tied to architectural services or capabilities, some of the activities 
described above can have an impact. 
 
During the third LVCAR Workshop, the candidate activities were presented to workshop attendees for 
their review, comment, and evaluation.  The Strategy 2 activity that was evaluated as “most valuable” 
by LVCAR workshop attendees is also the activity that is closest to solving some parts of the 
semantic interoperability problem; the Object Model Common Components activity has support 
across the entire community and there is wide agreement that the benefits promised by this activity 

 
 

Figure 11.2.  Activity Sequencing 
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need to become reality as soon as practical.  Other topic areas, not included in the sections above, 
were also presented to the workshop audience for their review, comment and evaluations.  These 
activity areas, while generally assessed as having value by workshop attendees, have not been 
included in the recommended activities described above because they represent very difficult 
problem areas that are beyond the scope of the LVCAR effort.   
 

11.2.1 Design Pattern Analysis 
"Design patterns" are reusable descriptions of behavior that collectively represent some well-defined 
pattern of interaction among real world entities.  For example, the interaction that occurs among the 
several systems that together executes the engagement of an air target by a SAM site is a design 
pattern.  Design patterns provide a traceable bridge from system requirements to system design to 
object models and other simulation environment design/development products.  The same reuse 
strategies that will be examined for object modeling will be also be examined for potential application 
to design patterns as well. 
 
"Fair Fight" issues, where one simulation within a larger simulation environment has an unfair 
advantage over another, can be caused by incompatibilities in the underlying assumptions regarding 
how the real world is being represented.  Such problems can be difficult to detect, in that the 
distributed simulation environment may appear to be functioning quite well.  However, 
incompatibilities in the way the real world is represented internally by interacting federation members 
can significantly affect the validity of a larger distributed exercise or experiment.  The general related 
need in this area is to define a library of design patterns that collectively represent those aspects of 
real world operations that are typically reusable from simulation to simulation.  This includes an 
analysis of several different user domains to determine how such operations are currently 
represented, and what specific domain areas are common across user communities.  There are also 
requirements to focus on the development of methods for exposing incompatibilities in the domain 
area representations, and also on developing a standardized format and syntax for design pattern 
representation.  Finally, community standards for reusable design pattern content need to be 
developed. 
 

11.2.2 Algorithmic Consistency 
As introduced in the "Design Pattern Analysis" discussion above, incompatibilities in the way real 
operations are represented in different simulations can significantly affect the validity of simulation 
interactions.  However, even if such representations are completely consistent, "fair fight" issues can 
sometimes also occur simply due to the underlying algorithms the various simulations use to model 
real world phenomena.  For instance, if two simulations within a distributed simulation environment 
are representing the exact same radar (with exactly the same system data) but use different 
algorithms for modeling detection and tracking performance, it is quite possible for different 
instantiations of the same radar to perform differently simply based on which of the two simulations 
created the instance.  Obviously, such artificialities would not occur in the real world, and thus the 
validity of the simulation results would be compromised. 
 
The need in this area is to examine the algorithms currently used to model real world systems and 
phenomena of military interest, and determine if agreements can be achieved across user 
communities on standards for common algorithms.  The scope should be based on an assessment of 
which algorithms are most common across DoD simulations (e.g., shoot, move, communicate) and 
where agreements across user communities are most feasible. 
 
In addition to standardization of algorithms, it is desired that implementations of those standards be 
made available for general reuse in the M&S community.  Thus, there is also a need to address the 
use of repositories for reusable M&S software distribution, as well as the business and cultural issues 
and associated incentives required to facilitate widespread sharing of models across programs and 
whole communities. 
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11.2.3 Environmental Representations 
There has been a considerable amount of effort across the Services and various DoD agencies to 
reduce the amount of effort required to develop and share environmental data for use within DoD 
simulation events.  Examples of success stories include the SEDRIS standard for environmental data 
interchange and the Environment Scenario Generator (ESG) for production of environmental 
databases.  However, ensuring that use of different simulated environments can result in valid 
system-to-system interactions remains a persistent problem in distributed simulation events.  The 
notion of “correlating environment representations” permeates the community, without a common 
understanding of the processes necessary to achieve fully interoperable simulated environments.  
Thus, there are needs to craft a procedural definition of environmental correlation, identify the main 
barriers to implementing a complete, consistent environmental representation management strategy, 
and identify effective implementation policies.  Missing resources include a technical strategy and 
implementation approach for improving the representation of the environment in LVC environments.  
The implementation approach should address tool requirements and business model considerations.  
 

11.2.4 Human Behavior Modeling 
The sheer size of modern battle spaces dictates the need for Semi-Automated Forces (SAF) to 
simulate human behaviors.  That is, there are so many human participants in simulations of current 
and predicted military engagements that having live operators for all decision-making entities is just 
not possible.  Many live training events use SAF for opposing forces, but many also use SAF for 
friendly forces they must cooperate with to achieve identified objectives.  While there has been 
considerable research that has gone into this area, and some notable success stories, the 
requirement for realistic and consistent SAF representations across the full range of entities that play 
in modern warfare representations is still largely unmet.   
 
The need in this area is to examine the current state of human behavior modeling within the DoD, 
identify gaps, and develop potential solutions that not only meet gaps in functionality, but also 
address functional inconsistencies that can occur in mixed architecture environments. The strategy 
here should emphasize the standardization and sharing of existing capabilities (e.g., JSAF, OneSAF) 
rather than performing new research.  Mechanisms to extract such capabilities from specific M&S 
systems so that they can be reused in other M&S systems must be emphasized whenever feasible. 
 

11.2.5 Bridging Multiple Security Domains 
Issues of security are extremely important when conducting a distributed simulation event.  When the 
entire event is conducted at a single level of security, the mechanisms to ensure that security policies 
and procedures are being fully addressed are generally well understood.  However, many distributed 
events involve the integration of "enclaves" of simulations that operate at different levels of 
classification.  Current mechanisms to bridge across different security levels are very expensive and 
time consuming to implement, and verifying that the guards are operating correctly (as part of overall 
LVC environment testing) is often unacceptably resource intensive.    
 
The need in this area is to examine the issues related to bridging multiple security domains, based on 
user requirements.  Policies, methodologies, and technologies must all be considered in deriving an 
optimal overall solution for future users of LVC environments. 
 

12 Conclusions and Recommendations 
The recommendations presented in this section are based on technical analyses alone.  They are 
provided in support of the integrated study team conclusions and recommendations, which achieve 
the unification of business, standards, management, affordability and technical area analyses, 
conclusions and recommendations.  The study team integrated conclusions and recommendations 
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are provided in the overall LVCAR final report.  Section 12.2 below provides specific, technical-area 
recommendations listed in order of decreasing priority. 

12.1 Technical Area Conclusions 
Each of the existing architectures is providing useful service to a dedicated user community.  While 
there are many similarities between the architectures, there are also differences (largely apart from 
technical capabilities, but including important cultural and business model factors) so that each 
architecture has an appropriate role within the entire community.  The similarities among the 
architectures are based on technical service capabilities and these similarities could be exploited and 
increased to lessen the problems encountered during mixed-architecture integration efforts.  One way 
to enhance the similarities among the architectures is through a process of managed capability 
convergence, intentionally modifying selected services, by architecture, to create commonality.  DIS 
only presents limited opportunities for convergence.  Higher levels of convergence are feasible for 
HLA, TENA, and CTIA.  Apart from convergence, there are also opportunities to improve mixed-
architecture interoperability by creating resources (external to any of the architectures) such as 
gateways, common object model components, and other resources described above.  In short, the 
architectural resources available to the Department are providing a high level of service.  Full 
replacement is not necessary.  The need is to make the available architectures capable of easily 
working together and this need can be met by exploiting opportunities to converge services and by 
providing interoperability-enhancing resources.   
 
There is also a need to stop the further creation of alternate architectures.  There is no evidence that 
current or future requirements cannot be met by the available resources, either as they stand today or 
after some level of enhancement.  Further, enhancing one or more of the available architectures to 
meet unresolved needs is preferable to creating “new and improved” alternate architectures, not only 
from a cost basis, but from an interoperability perspective as well.  One lesson of history is that, if a 
new architecture is created to replace one or more of the existing set, the most likely outcome is that 
there will simply be one more architecture added to the available set.  Actually retiring an architecture 
has proven very difficult. 
 
There are significant interoperability problems that have little to do with the architectures themselves.  
Barriers to semantic interoperability are a genuine concern and there is little effort currently directed 
at resolving the salient problems.  Similarly, there are multi-level security issues that impact 
simulation events. 

12.2 Technical Area Recommendations 
1. All of the existing architectures should continue to receive support in the immediate future.  
Subsequent to the conclusion of the convergence service area feasibility experiments, one or more of 
the architectures may be subsumed by a converged capability, providing a rational basis for ending 
Department support to the subsumed architecture (s). 
2.  DIS should only be considered as a candidate for limited convergence.  This protocol provides 
unique services and capabilities that would be lost were the protocol to be fully converged with other 
architectures that serve different communities and necessarily provide higher levels of service 
capability.  While some of the activities that could lead to more service-level compatibility (e.g., 
common, components of object models, standard wire-level protocols, etc.) between DIS and the 
other architectures will prove advantageous, DIS should remain much as it is today, a lightweight, 
core capability protocol. 
3. From a technical point of view, there are significant opportunities to converge the services provided 
by HLA, TENA, and CTIA.  A follow-on effort to conduct additional, more detailed analyses and 
experiments should be chartered.  This effort should be focused on producing qualitative data that 
can lead to informed decisions on specific service capabilities to be converged.  Whether or not such 
service-level convergence leads to eventual architecture convergence, achieving a state where these 
architectures provide very similar services will facilitate interoperability and decrease the integration 
effort when conducting mixed-architecture events. 
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4.  The creation of a common, component-based object model should be aggressively pursued.  The 
Department should leverage existing efforts in this area now underway at JFCOM and ensure that the 
result spans joint needs across the entire Department. 
5.  The creation of shared and reusable intercommunication mechanisms (e.g., gateways and 
bridges) should be aggressively pursued.  A follow-on effort to produce the technology required in this 
area, to include specification of suitable discovery and distribution mechanisms should begin as soon 
as supporting resources can be made available. 
6.  Follow-on efforts to complete the analyses and experiments outlined above should be chartered.  
Again, existing efforts should be leveraged to the extent possible, including the current effort to create 
a common systems engineering approach that could be used across the Department. 
7.  A follow-on effort to examine the entire interoperability problem should be started immediately.  
This effort must address the system-to-system interaction problem at the semantic level and 
nominate candidate solutions for the “fair-fight” problem, particularly regarding the ways that these 
problem areas impact the integration of live assets 
8.  Provisions of the emerging DoD Security requirements must be addressed. 
 
 




