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Executive Summary

Many problems exist with respect to the procedures and technologies used to develop mixed
architecture live, virtual, and constructive (LVC) environments. The incompatibilities between these
architectures require expending a considerable amount of resources to develop point solutions that
effectively integrate them into a single, unified set of supporting simulation services. Gateway
solutions to these types of issues have frequently restricted exercises to using only the limited set of
capabilities that are common across all of the architectures, resulting in a “dumbing down” of the
more capable architectures. Further, the lack of high-level management oversight of all existing
distributed simulation architectures (as a unified resource) has resulted in a situation where continued
8ivergence of architectural capabilities is not only possible but likely, and new (potentially redundant)
architectures can emerge at any time. Clearly, such issues must be satisfactorily resolved if long-
term interoperability goals are to be achieved.

The architectures that were considered as part of this study include:

+ Distributed Interactive Simulation (DIS)

» Aggregate-Level Simulation Protocol (ALSP)

» High-Level Architecture (HLA)

+ Testand Training Enabling Architecture (TENA)

+ Common Training and Instrumentation Architecture (CTIA)

Each of these architectures was designed to address the requirements of their defined user base.
LVCAR Phase | efforts analyzed the core requirements of each architecture and directly compared
key categories of requirements. There is a high degree of functional commonality between the
architectures, particularly regarding HLA, TENA, and CTIA. However, there are also some key
differences, stemming from specific needs that originally drove the development of each architecture.

At the implementation level, there are substantive differences among the architectures. Such
differences are characterized as "wedge issues", potentially becoming barriers to achieving cross-
architecture interoperability. The study finds that none of the wedge issues introduce irreconcilable
incompatibilities that prevent the integration of the different architectures into mixed architecture
events. However, achieving such integration is not without cost, and some degree of
analysis/experimentation is required to determine the best near-, mid-, and long-term solutions to
addressing these incompatibilities.

A set of five potential strategies has been identified, and a corresponding set of advantages and
disadvantages associated with each of them. An analysis of these factors, along with an assessment
of how well each strategy met requirements derived from assertions that characterize the current LVC
interoperability picture, led to the elimination of three strategies from further consideration. The
remaining strategies (Strategies 2 and 3) are defined as follows:

+ Strategy 2: Define and develop mechanisms to improve LVC interoperability in mixed-
architecture environments, assuming that the current architectures will continue to be used.

+ Strategy 3: Develop policy and incentives to encourage existing architectures to converge
(over some defined period of time) to either a single architecture or a smaller set of
architectures.

The final phase (Phase Il) of the LVCAR study effort resulted in a more detailed assessment of the
two remaining strategies. Phase |l efforts also developed the temporally sequenced set of actions
required to implement the strategy. Each action was assessed according to its inherent benefit and
cost, and value considerations strongly influenced the final configuration of the LVC architecture
roadmap.



1 Introduction and Overview

The goal of the LVCAR study is “to methodically and objectively develop a recommended roadmap
(way forward) regarding LVC interoperability across three broad areas of concern: definition of the
desired future integrating architecture(s), the desired business model(s), and the manner in which
standards should be evolved and compliance evaluated. The roadmap will also provide:

= Rationale for these recommendations, citing the findings on which they are based

= An assessment of how any LVC architecture policy change might be perceived in the user
communities, with a recommendation on optimal ways to communicate this new direction

= Recommended next steps (e.g., experiments, prototyping new architecture(s), etc.)”

Sponsored and funded by the U.S. Department of Defense (DoD) Modeling and Simulation (M&S)
Steering Committee (SC), the study will explore and assess a number of alternatives supporting
simulation interoperability (at the technical level), business models, and the evolution process of
standards management across the Department. The goal is to define an efficient, effective path to
maximize technical interoperability of M&S systems across the U.S. DoD. This document provides
the findings developed by the LVCAR Architecture team.

1.1 General Problem Statement

The early 1990’s saw many accomplishments in the area of distributed simulation. The earliest
successes came through the SIMNET program, which demonstrated that geographically dispersed
simulation systems could support distributed training by interacting with each other across network
connections. Following on this success, the Aggregate-level Simulation Protocol (ALSP) extended
the benefits of distributed simulation to the force-level training community so that different aggregate-
level simulations could cooperate to provide theater-level experiences for battle-staff training. At
about the same time, the SIMNET protocol evolved and matured into the Distributed Interactive
Simulation (DIS) standard. DIS allowed an increased number of simulation types to interact in
distributed events, but was again focused on the platform-level training community. In the middle
1990’s, the Defense Modeling and Simulation Office (DMSO) started the High-Level Architecture
(HLA) program to combine the best features of DIS and ALSP into a single architecture that could
also support uses in the analysis and acquisition communities, while continuing to support training
applications. HLA was designed from the start to support a wide set of potential user communities.

As is the case with most broadly applicable tools, some began to perceive HLA as a “jack of all
trades, but master of none.” In particular, two communities started development of alternate
architectures due to their perception that HLA included unacceptable performance limitations. The
real-time test range community started development of the Test and Training Enabling Architecture
(TENA) to provide low-latency, high-performance service in the hard-real-time application of
integrating live assets in the test-range setting. Similarly, the Army started development of the
Common Training Instrumentation Architecture (CTIA) to interconnect live assets on Army training
ranges as they participated in large-scale exercises.

With the exception of SIMNET, all of these architectures remain in service today. Some are in early
and growing use (e.g., CTIA, TENA) while others have seen a reduction, but not elimination, of their
user base (e.g., ALSP). Each of the architectures is providing an acceptable level of capability within
the areas where they have been adopted. However, ALSP, DIS, HLA, TENA, and CTIA federations
are not inherently interoperable with each other. Thus, when simulation events include applications
that rely on the different architectures, additional steps must be taken to allow effective
communication between all applications. These additional steps, typically involving interposing
gateways or bridges between the various architectures, may introduce increased risk, complexity,
cost, level of effort, and preparation time into the event. Additional problems extend beyond the
implementation of individual simulation events. As a single example, the ability to reuse supporting



models, personnel (expertise), and applications across the different protocols is limited. In short, the
limited inherent interoperability between the different protocols introduces a significant and largely
unnecessary barrier to the integration of live, virtual, and constructive simulations. This barrier must
be greatly reduced or eliminated.

1.2 An Underlying and Fundamental Aspect of the Problem

There is a perception by many in the LVC community that interoperability will be much easier (and
less costly) if there is only a single architecture available for use. Stated somewhat differently, many
share the opinion that reducing the number of available architectures to one would result in a far
easier interoperability situation than we face today. Included in this perception is the concept that the
Department would benefit by eliminating the costs associated with maintaining overlapping
capabilities. The desire to achieve a single-architecture state is based on a number of difficulties in
the current situation that can be directly attributed to the existence of multiple architectures.

First, problems arise whenever multiple architectures must be integrated for use in a single event. In
many cases, such mixed-architecture events can only use the set of capabilities common across all of
the architectures to be included in the event. This is sometimes described as the “dumbing down” of
the more capable architectures because the full range of unique capabilities they offer (e.g., more
advanced capabilities such as repeatability, communications bandwidth efficiency, ownership
transfer) cannot be used across the entire set of participating systems. Further, the costs required to
integrate architectures rarely contribute directly to achieving simulation event goals. Instead, the
associated costs usually provide point solutions, versions of which have likely been created in the
past and probably will be paid for again in the future. Thus, the integration costs are viewed as
recurring expenses that contribute little to achieving event goals and should thus be eliminated.
Mixed architectures also impede “plug-and-play”; it is slower, more expensive, and sometimes
impractical to compose simulation events using any of the wide range of assets (e.g., simulations,
simulators, labs, ranges, C4ISR systems, etc.) available in the DoD inventory. In this view, one
cannot simply choose an asset based on functional merit alone in all cases; frequently, the asset also
is constrained to be compatible with a specific architecture. If the “out-of-the-box” compatibility
constraints are ignored, some amount of additional cost (time, dollars, etc.) often follows. Typically,
this cost cannot be ignored, so event designers will not even consider incompatible assets and will
thus design events without having a complete picture of the resources that might have been used.

However, while each of these disadvantages can be attributed to the existence and simulation system
use of multiple architectures, their existence does not necessarily justify an assumption that ridding
the DoD of all but one architecture would result in an optimal state of affairs. In light of past
experience, there are at least five main factors indicating such an assumption appears to be
fallacious. First, legacy systems will continue to be used and it is unlikely that these systems will
upgrade to using a new or different architecture. Thus, use of legacy systems is most likely to
preclude the possibility of ever achieving a truly “single-architecture” state. Second, use of a single
architecture may still require the use of supporting bridges, much as use of different RTls (all derived
from the same HLA architectural specification) can require bridges today. Third, gateways will be
required for connecting any single simulation architecture to C4l systems, to the GIG, or, in general,
to any type of system that has a primary purpose outside of the simulation arena. Fourth, the
alignment of a family of simulations on a single architecture represents a single point solution.
Having attained such standardization, history points to the likelihood that the diverse group of
simulation users will quickly diverge into specializations, leading to the need for gateways to bridge
their differences. Fifth, the selection or creation of a single architecture assumes that the rapid
advances of the commercial software industry will not lead to a better implementation in the future,
perhaps based on a Service-Oriented Architecture (SOA) paradigm. When this does occur, the
existing standard architecture would be abandoned by users who have needs for the superior
architecture delivered by the commercial sources.
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The simultaneous existence of multiple architectures may allow benefits that are less likely to be
achieved in a single architecture state. These include: 1) the ability to support multiple business and
standards-use communities simultaneously and; 2) fostering the capability to “use the right tool for the
job”, avoiding the “one size fits all’ problem. Some specific examples include:

e DIS: This protocol has a comparatively low barrier to entry; it is relatively simple to learn and
easy to use. Also, it imposes a very low overhead. Whenever simulation events do not
require using more advanced architectural services (such as time management, region-based
information filtering, and so on), DIS offers a very economical solution to the system
intercommunication problem.

* HLA: This architecture can serve a disparate collection of simulation systems, including
those that require advanced architectural services and those that have modest requirements.
In addition to its large U.S. user base, it's standing as an international standard has resulted
in a large level of use in the coalition partner countries, facilitating combined simulation
events that include multiple nations.

e TENA: This is a very capable architecture, offering much of the same capability as HLA, but
based on more modern object-oriented technology. TENA middleware is offered to
government users as GOTS, unlike the HLA that must be purchased on a per-seat basis.

e CTIA: This architecture uses the service-oriented paradigm and is unique in that respect.
Also, it has been designed to continue providing some level of service even in the face of
unreliable communication networks. It also provides advanced service capabilities while
providing an “on-the-wire” specification (instead of an API-level standard), thus offering
potentially improved support for multiple hardware platforms, operating systems, and
software development languages.

In short, the existence of multiple architectures is not necessarily an undesirable outcome and, given
some of the unique benefits, could be a desirable outcome if the architectures can be easily
integrated.

In summary, there are advantages and disadvantages associated with the number of architectures
that are available for use. There is no paramount advantage or disadvantage that allows one to
immediately recognize the best possible solution. A significant problem for the LVCAR roadmap
effort is to navigate this trade space to arrive at an achievable solution that maximizes the benefit for
all concerned while not exceeding the resources that will be necessary to realize that solution.

1.3 Methodology

The original specification of requirements for the LVC Architecture Roadmap effort includes as a
deliverable: “A systems engineering analysis of alternative means to achieve LVC architecture
interoperability or convergence, considering all relevant factors, ..., and providing metrics as feasible.
Innovative approaches shall be considered.” As explained by the International Council on Systems
Engineering in the INCOSE Handbook, “The basic engine for systems engineering is an iterative
process that expands on the common sense strategy of (1) understanding a problem before you
attempt to solve it, (2) examining alternative solutions (do not jump to a point design), and (3) verify
that the selected solution is correct before continuing the definition activities or proceeding to the next
problem.”! There are many formally-established and recognized models that help engineers execute
this process, including the various Waterfall models, the Spiral model, and well-regarded “Vee” model
of systems development. The common factor in each of these models is that they focus early on
defining and documenting needs and requirements as a precursor to formal problem definition,
development of a solution (to include the development and analysis of alternatives), and finally
implementation and validation of the selected course of action. The LVC Architecture Roadmap is

! http://g2sebok.incose.org/app/mss/menu/index.cfm, Section 2.2.1, “INCOSE Handbook SE process Model”.
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concerned with the first steps in this process and is not chartered to address implementation and
validation issues.

Given that “... that there is no cook-book recipe for performing systems engineering because there is
such great diversity in the kinds of systems that are produced by the systems engineering activities
...”%, the architecture team approach to the systems engineering process for this problem is designed
to focus on requirements and the development of alternative solutions that meet those requirements.
Our process is to: 1) characterize the current state; 2) define a desirable end state; 3) identify
differences between the current and desired state and develop strategies that offer promise in
eliminating the differences, and; 4) perform an analysis of alternatives to select the most favorable
course of action. Each of these steps is described more fully below. Generally, steps 1 and 2
correspond to the first step in the INCOSE common-sense strategy of understanding the problem.
Similarly, the final two steps allow us to “examine the alternative solutions.”

A characterization of the current state (see Section 2) has been developed based on literature
reviews, subject-matter expert interviews, workshop interactions, survey instruments, and expert
team input. All of these input sources have contributed to an identification of the architectures
currently in use, their degree of use, and a description of the types of use for each (e.g., by
community of interest and as stand-alone resources or as part of mixed-architecture events).
Concurrently, the characterization of the current state has also led to a definition of the current
architectural requirements. The study team has captured a list of key issues (“wedge issues”) which
provide the basis for a community perception of differences between the architectures. The current
state characterization also includes analyses of how the requirements have been met and the actual
incompatibilities of the architectures, stemming from the wedge issues. Finally, the current state
analysis has also led to a definition of likely future requirements.

The vision statement (see section 3) describing the desired end state has been derived from the goal
of establishing the seamless integration of live, virtual, and constructive systems. The same
information sources used to characterize the current state (e.g., survey instruments, expert team
input, etc.) have also helped to shape this vision. Further, the desired end state has been
decomposed to permit a more detailed description of its associated attributes

The development of alternative strategies to transition from the current state to the desired end state
has been inspired by the INCOSE principle of “innovate by generating a wide range of alternative
solutions to satisfy the need. (A common mistake is to converge on a "comfortable design" concept
too early because of time constraints.)”®> Five different strategies have been proposed as potential
solutions. Some of the solutions in this initial set are mutually exclusive while others are more flexible
and fully support the INCOSE principle of repeating analyses to (re) investigate the desirability of the
alternative solutions as better data becomes available.* Finally, a part of the alternative solution
development has been to document a set of relative advantages and disadvantages (“pros and cons”)
of each one.

1.4 Levels of Interoperability

Many of the known problems that impact LVC integration stem from technical incompatibilities among
the various distributed simulation architectures. However, achieving the goal of a truly interoperable
LVC operating environment requires that developers consider a wide range of issues beyond the
basic question of how to pass runtime data along the simulation network. As examples, issues
related to data modeling, coordinate systems, synthetic natural environment representation, and
algorithmic consistency are frequently outside the scope of the problems that simulation architectures

2 http://g2sebok.incose.org/app/mss/menu/index.cfm, Section 2.2.0, “Overview”

? http:/g2sebok.incose.org/app/mss/menu/index.cfm, Section 2.1.4.4, “Identify and Assess Alternatives so as to
Converge on a Solution”

* http://g2sebok.incose.org/app/mss/menu/index.cfim, Section 2.1.2.2, “Investigate Alternatives”
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were ever designed to address. The consideration of such issues as part of a structured systems
engineering methodology is critical if executions of the LVC environment are to produce valid results.

The following framework is one tool useful in assessing interoperability (although others have also
been proposed). It identifies five basic levels of simulation interoperability, with each level building
upon each preceding level’:

Technical Interoperability (Level 1): Physical connectivity is established, allowing bits and bytes to be
exchanged.

Syntactic Interoperability (Level 2): Data can be exchanged in standardized formats (i.e., the same
protocols and formats are supported.

Semantic Interoperability (Level 3): Information (data plus context) can be exchanged. Common
reference models define the unambiguous meaning of data.

Pragmatic/Dynamic Interoperability (Level 4): Knowledge (information plus its use and applicability)
can be exchanged.

Conceptual Interoperability (Level 5): A common view of the world is established. This level not only
comprises the implemented knowledge, but also the interrelations between these elements.

LVC interoperability is affected across all of these levels. The distributed simulation architectures in
use within the DoD today all provide services for achieving technical and syntactic interoperability
(e.g., levels 1 and 2); however, problems with how these services interact at runtime can adversely
affect interoperability in mixed architecture environments. While solutions can be found to such
problems, it is important to recognize that most practical distributed simulation applications require
interoperability at levels above the syntactic level. Addressing interoperability issues at the semantic
level (and above) frequently transcends the architectures themselves, and generally involves the
establishment of cross-community agreements and standards on such supporting resources as data,
processes, and tools. Thus, although the primary focus of the LVCAR is on the syntactic-level issues
of mixed architecture integration, the general desire to reduce the technical, cost, and schedule risks
associated with developing and operating future LVC environments also requires the consideration of
higher-level interoperability issues. This will be discussed later in this report.

2 The Current State

An assessment and description of the current state has been developed based on literature reviews,
subject-matter expert interviews, workshop interactions, survey instruments, and expert team input.
The current state attributes of interest are: 1) the architectures currently in use; 2) the requirements
that these architectures have been designed to address; 3) differences between the implementations
that meet those requirements, and; 4) potential future requirements. Each of these areas is
described in the sections that follow.

2.1 Architecture Usage

As described in the project plan, the currently employed architectures and protocols include the
Distributed Interactive Simulation (DIS) protocol, the Aggregate-Level Simulation Protocol (ALSP), the
High-Level Architecture (HLA), the Test and Training Enabling Architecture (TENA), and the Common
Training and Instrumentation Architecture (CTIA). Each of these has an established community of
use, and the number of users is increasing in each case except ALSP (where the user base appears

> Tolk, A., "Composable Missions Spaces and M&S Repositories — Applicability of Open Standards",
Simulation Interoperability Workshop, Washington D.C., April 2004.
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Figure 2.1 Frequency of Cited Use (Percentage), by Architecture / Protocol

to be vanishing as users migrate to HLA). Figure 2.1 is based on the LVCAR initial survey instrument
completed in August 2007. Respondents were allowed to cite use of multiple architectures; the
percentages above are based on the total number of cited use (so that sum of all cites uses equals
100%). Survey data shows that HLA and DIS have the largest frequency of cited use and together
account for seventy percent of all simulation uses within the population represented by the survey
audience. Detailed demographic information on the survey audience is presented elsewhere in the
LVCAR Final Report.

Survey completion was a requirement to participate in the LVCAR working group. There were 105
respondents contributing to the data in Figure 2.1. While not a large number, the respondents
represented the majority of the Department of Defense simulation communities. The “Other” category
in the data includes several proprietary and custom-built architectures that are not generally available
for public use. (Note that some survey respondents cite use of multiple architectures.)

2.2 Current Capability Requirements

A companion LVCAR report provides greater detail on the requirements collection methodology and
results. This section provides a comparative presentation of the requirements collection effort,
illustrating the degree of commonality between the various architectures and protocols. In the tables
that follow, entries colored green indicate a high degree of commonality, yellow indicates a moderate
degree of commonality and red indicates significant differences in the requirements. Note that
definitions associated with the categories used in this comparison are provided in Appendix L
(Definitions) of the LVCAR Interim Report.

Requirement DIS HLA TENA CTIA ALSP
Create a distributed Limited. Yes Yes Yes Yes
simulation, allow Simulation
systems to join & management
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resign; provide for

requirements

initialization and reflected in
destruction of the Simulation
distributed Management
simulation instance (SIMAN)
Protocols
Support publish No. However, Dynamic Dynamic Dynamic Dynamic
and subscribe the DIS
information architecture
management must support
(filtering) either multicast,
broadcast, or
unicast packets
Transport Type Only supports Support both Support both best Supports Supports reliable
best effort best effort and effort and reliable reliable and messaging
messaging reliable messaging unreliable
messaging networks.
UDP unicast
and multicast
protocols
supported
Interoperate with No requirement, “One of the Yes - CTIA has No requirement
HLA federations although HLA primary goals of a requirement
did not exist TENA is to to provide
when the DIS interoperate with gateways to
specifications HLA simulations, non CTIA-
were written. therefore a TENA- compliant
DIS gateways to-HLA gateway is protocols and
are now plentiful one of the many architectures
gateways that is such as DIS
needed.” See 3.6, and HLA
“Foundation
Initiative 2010,
Second TENA
Middleware
Prototype
Requirements
Document”
Support multiple Limited. Supports Supports state Yes: Supports | Supports state updates,
message types Simulation interactions updates, single state updates, single messages, and
management and state messages, and single data streams
requirements updates data streams messages, and
reflected in data streams
Simulation
Management
(SIMAN)
Protocols

Table 2.1a Requirements Comparison
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Requirement DIS HLA TENA CTIA ALSP
Save and Yes: Provided Yes Original Requirement: “... Yes: Exercise is Yes for Save.
restore by SIMAN middleware support for continuously saved Spec doesn’t
operation protocols application save and (all exercise data discuss
restore is not necessary is logged to a Restore, but it
in a range context ...” centralized DBMS) can be safely
assumed
TENA requirements have
been updated to reflect a
need to provide this
capability
Region-based No Yes Original Requirement: Yes: Yes.
information Requirement No. Discrimination by Discrimination
management object class, by object class,
(filtering) TENA requirements have attribute value / attribute
been updated and TENA range, and value/range,
will be enhanced to geographic and geographic
provide a DDM-like position location (e.g.,
capability with the next play box)
release (Nov 07)
Transfer of Object Attribute Transfer Object Transfer Objects are Dynamic
ownership Transfer (Object transfer centrally owned, attribute
through but can transfer transfer
privilegeToDelete the right to change
attribute) object state
Synchronize At Stop/Freeze At any time At Initialization: “TENA No: Only At Save points
applications points; See middleware shall not be synchronization
SIMAN responsible for ensuring through operating
protocols that system clocks are system capabilities
synchronized.”
Global Event No. However, Both: Time- “TENA applications need Events are time- Yes: always
Ordering time stamped order to be able to deal with stamped when
management and Received Time Management generated but may
options shall order supported issues only when be delivered in
include real- connecting to simulations arbitrary order.
world time, via the HLA Gateway. Subscribers must
scaled real- Thus, no specific time be capable of
world time, and management handling events
scaled/stepped requirements exist for the out of order.
real-world time TENA middleware However, all
events are logged
to the event
database to
preserve event
ordering for AAR.
Specification for No Very Limited: RTI | Yes: Data Logger, Object Yes: Extensive Limited: ALSP
Middleware, requirement Model, Middleware, ... A “product line” Broadcast
Tools & Utilities “Product Line* requirements for a Emulator
Architecture large number of (ABE), ALSP
tools & utilities Common

Module (ACM),

Table 2.1b Requirements Comparison (continued)
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The comparative analysis in the above tables illustrates that there is a high degree of commonality
between the architectures and protocols. This is particularly true concerning HLA, TENA, and CTIA.
However, there are also some key differences that have been indicated in the specifications of
requirement for these architectures. As an example, CTIA has a documented requirement to provide
a persistent database of all objects; the architecture is required to support persistence of component
identities across restarts. Thus, all information is continually recorded in an SQL-type database.
This requirement is different than that imposed on a data logger which records interactions sent
across the simulation network. CTIA is the only architecture that supports such a requirement
(although TENA has been required to “support the local collection of data to a persistent store”).

CTIA is also uniquely required to support continuation of exercises in cases where the transport
network itself is unreliable.

TENA has also been presented with a unique requirement that is not technical. The TENA JORD
states: “SW-6: the software must minimize the purchase of run-time licenses.” This appears to be the
only example where a purchase requirement has been expressed as an architectural requirement.

The considerable amount of capability overlap (considering only major characteristics), as well as
some of the aspects unique to each of the architectures is illustrated in Figure 2.2.

Information management

Ownership
transfer

Save & Restore

Initialize a Pass interactions

fedetation
DIS - The core

QOS
options

Support
Unreliable
Networks

Multiple message types

Synchronize

CTIA

ordering
Persistent
Database

Figure 2.2 Architecture Capabilities: A High-level View

2.3 “Wedge” Issues

“Wedge” issues are characteristics of the different architectures and protocols that result from the
different implementations of their requirements. These implementation characteristics are popularly
seen as “wedges” between the architectures because they represent areas that could be barriers to
achieving cross-architecture interoperability. This section examines the relevant wedge issues,
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describes the implementation choices made in the case of each architecture or protocol, and
describes the potential to resolve incompatibilities of the wedge issues. (See Appendix L for related
definitions.)

2.31

Wedge #1: On-the Wire or Application Program Interface

(API) Standard

DIS

On-The-Wire: An on-the-wire protocol enforces data structure/encoding rules, and thus
strongly facilitates syntactic interoperability. Since the DIS community has a well-
defined set of users (real-time, platform-level only), it was believed that long-lived
agreements on the wire protocol could be obtained.

HLA

API Standard: On-the-wire specifications can require frequent updates to account for
technological advances in how data is transmitted. Since HLA is an established
standard (normally updated at five year cycles), making frequent updates would be very
disruptive to users. An API standard hides the details of how data transmission takes
place, and thus allows new technologies to be integrated without affecting the core
standard.

TENA

API Standard: On-the-wire specifications can require frequent updates to account for
technological advances in how data is transmitted. Having to provide a new version of
TENA every time a new data transmission technology is used would be very disruptive
to users. An API standard hides the details of how data transmission takes place, and
thus allows new technologies to be integrated without affecting the core standard.

CTIA

On-The-Wire: CTIA chose an on-the-wire specification to support development of
components on multiple operating systems in virtually any language, without requiring a
specific middleware solution. This allows independent development of components for
virtually any operating system, hardware platform and in any programming language.
This also allows CTIA to optimize the interfaces to maximize performance over limited
bandwidth networks (i.e. wireless).

ALSP

On-The-Wire: ALSP chose an on-the-wire specification to avoid the need to change
the using simulations in any way (no code changes to the federates) - this had the
beneficial side-effect of insulating the infrastructure from the simulations - when one
simulation failed (crashed) the communications infrastructure remained fully operational
and could help restore the state of the failed federate when possible.

There are advantages and disadvantages to both approaches. However, translation to and from on-
the-wire standards can be handled very efficiently at the gateway level, and can be used to achieve

interoperability between the architectures.

irreconcilable differences between the different architectures.

2.3.2

Wedge #2: Single or Multiple Reference Frames

DIS

Single: A single coordinate system used through the connected systems can improve
efficiency and resolve some semantic issues. However, if transformations to the single
in-use systems are calculated differently (e.g., using different datum) inconsistency can
result.

HLA

Single: (same discussion as above for DIS)

TENA

Multiple: Using multiple, ‘native’ coordinate systems eases application burden and a
single specification of the transformation method increases the probability of coordinate
consistency. TENA provides services from the SEDRIS Spatial Reference Model
(SRM) to achieve coordinate transformation.

CTIA

Single: CTIA selected WGS84, Earth-Centered, Earth-Fixed reference frame, with a
local range offset applied (to provide high precision while reducing required bandwidth).
Components that use the CTIA Frameworks utilize the Synthetic Environment Data
Representation and Interchange Specification (SEDRIS) coordinate conversion utilities
to ensure consistent coordinate transformations.

ALSP

Single: A single coordinate system used through the connected systems can improve

This wedge issue does not appear to introduce
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efficiency and resolve some semantic issues. However, if transformations to the single
in-use systems are calculated differently (e.g., using different datum) inconsistency can
result.

This is a

233

minor consideration in architecture design and requirements specification. Either approach
can lead to inconsistencies, depending on the implementation and the choices in the transformation
process. Translation to and from different coordinate systems can be handled very efficiently at the
gateway level, and can be used to achieve interoperability between the architectures. This wedge
issue does not appear to introduce irreconcilable differences between the different architectures.

Wedge #3: Number of Compliance Levels

DIS

None: No compliance testing required to claim being a DIS-compliant system.

HLA

Single: Compliance for HLA federate simulations is entirely driven by the federate
Simulation Object Model (SOM). The SOM defines the information that the simulation
can produce and consume, and the services it can support. Thus, compliance testing is
always done within the context of a simulation's SOM. Although this means that a
simulation can define a minimal interface and still declare itself "HLA compliant", the fact
that its SOM reflects very minimal capabilities and thus will be unlikely to be chosen for
a federation is a strong deterrent. (Note that HLA also provides compliance testing for
the RTI.)

TENA

Multiple: TENA developed several levels of compliance, all focused on the degree to
which each simulation conforms to the rules of architecture. By defining multiple levels,
it is more straightforward to identify and integrate compatible simulations, and potential
users have a greater understanding of the capabilities of a given simulation with respect
to its ability to operate in a TENA environment.

CTIA

Multiple: CTIA defines multiple levels of compliance, all focused on the degree of
reusability for components. Higher levels of compliance indicate greater potential for
reusability.

ALSP

Double: ALSP has two basic levels of "good actor" testing. One level is to ensure
simulations can consume (subscribe to) information as defined by the ALSP
specification. All ALSP actors must be able to support this for the confederation to
operate effectively. An additional set of compliance tests are performed on actors that
can also publish information. These two levels are necessary to avoid subscribe-only
actors being submitted to unnecessary tests.

This is a minor consideration in assessing architecture compatibility. Gateways are not required
based on the differences. Multiple levels of compliance could be used with HLA federations, but are

somewhat irrelevant given the absence of a standard object model.

Also note that TENA design

requirement RM-2 states: “As TENA-compliant, the Resource Manager shall also be compliant with
HLA and be able to manage HLA-compliant resources.” This wedge issue does not appear to
introduce irreconcilable differences between the different architectures.

234 Wedge #4: Object Model Loading - Run-time or Compile time

DIS N/A: DIS does not have an object model

HLA Run-time: Permits dynamic changes to the object model (Modular FOM) and does not
require recompile subsequent to object model changes.

TENA | Compile-time: Compiler error checking is applied to the object model (e.g., data type
consistency) so that some errors can be discovered prior to run-time integration.

CTIA Both: The majority of the CTIA Object Model is specified at compile-time, which
facilitates compiler error checking. However, a portion of the CTIA Object Model is
specified at run-time, to support flexibility, where required, in the definition of the Object
Model for a particular range, or component.
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ALSP | Run-time: Although the ALSP object model was generally fixed, developers wanted the
flexibility of entering an arbitrary object model at runtime rather than compiling the object
model into their code.

This is a minor consideration in assessing architecture compatibility and is most closely related to
initialization procedures. Gateways are not required based on the differences. This is a major
consideration in individual architecture design, having both technical and business implications, but
this wedge issue does not appear to introduce irreconcilable differences between the different
architectures.

2.3.5 Wedge #5: Global Event Ordering

DIS No: DIS is for real-time platform-level applications where some mismatches in event
order are tolerable due to human delays in recognizing and reacting to such
mismatches.

HLA Yes: HLA is a general-purpose simulation architecture that has a hard requirement to
support both FTRT and STRT applications that require strict causal ordering of events.
Although this is only an issue with constructive federations, there is a sufficiently large
user base to justify that appropriate event ordering and time synchronization
mechanisms are supported by the architecture.

TENA | No: At this time, all TENA applications are real-time, for which minor event ordering
mismatches are tolerable.

CTIA No: At this time, all CTIA applications are real-time, for which minor event ordering
mismatches are tolerable. CTIA does provide event ordering for historical queries (a
persistent store of exercise history is included as part of the architecture) and CTIA
supports recovery of events (i.e. due to loss of communications) with special handling.

ALSP | Yes: ALSP is a constructive, time-managed simulation environment that depends on the
ability to accurately order events within each time step (generally one minute).

This difference does not seem easily reconcilable. Gateways can be used to change time-
management approaches as necessary, but can only time-stamp a message when that message is
received at the gateway. If messages become out-of-order before arriving at the gateway, the
gateway cannot restore the correct order. The problem can be resolved to a large degree (probably
perfect resolution is possible) by interposing a “time-stamping” gateway between each message-
generating application and the simulation network (as opposed to the conventional use of gateways
between different architectures). This strategy would likely require many more gateways to be used
than the conventional gateway-use strategy and thus could impose performance costs on the
simulation exercise. However, it is not impossible to resolve the differences between time-managed
and non-time-managed architectures and this wedge issue does not appear to introduce
irreconcilable differences between the different architectures. Note that the architecture cannot
resolve problems that arise based on the limitations of using simulation systems; the capabilities of
systems that cannot respond appropriately to time-managed information will not be improved by
changes to the architecture.

2.3.6 Wedge #6: Standard Object Model Provided

DIS Yes: Although not a formally defined object model, the allowable content for data
exchange is embedded in the standard. Thus, any application that complies with the
DIS standard should be able to interoperate with other DIS-compliant applications.

HLA No: As HLA is a general-purpose architecture, it must be flexible to support a wide
range of users. Thus, the design separates the data architecture from the simulation
architecture, and simply provides a template to allow users to define their data
exchange based on specific requirements. In recognition of the problem associated
with specifying a new object model for each new application, users were encouraged to
define community-standard object models outside of the architecture. The RPR FOM is
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one example of this.

TENA | Yes: To facilitate interoperability among ranges, a standard TENA object model was
developed. Thus, if all participants use the TENA object model, a high degree of
interoperability can be achieved. However, the TENA architecture also allows users to
define alternative object models that better fit their needs. This provides a highly flexible
"middle ground" between the options of having the data being part of the simulation
architecture or not.

CTIA Yes: To facilitate interoperability, independently developed components and products,
the majority of the CTIA Object Model is provided by the architecture. However, some
portions of the Object Model are defined as “Flexible Features” which supports
extensibility (by individual component developers or product integrators).

ALSP | Yes: The simulations in the ALSP confederation are known, and the exercises they
support are all similar in nature. Thus, it was possible to achieve incremental
agreement on the content of a standard object model that evolved over a period of time
and then stabilized.

This is a minor consideration in assessing architecture compatibility and is most closely related to
pre-runtime procedures. Gateways are not required simply because of the lack of a common model
(although gateways or some other translation mechanism will be required to support communication
between applications using different object models). HLA could be modified in this area by officially
adopting a standard set of Base Object Models (BOM) that could be flexibly composed to suit multiple
needs; this set should include models that would be compatible with the TENA standard model and
those developed as parts of the RPR FOM effort, at a minimum. This wedge issue does not appear
to introduce irreconcilable differences between the different architectures.

2.3.7 Wedge #7: Object Model Extensible

DIS No: Again, although the DIS data architecture does not include an object model per se,
the Protocol Data Unit (PDU) content/structure was defined using an open standards
process and resulted in a community consensus to meet identified needs. However,
changes to the PDU content/structure currently happen very infrequently, and defining
special-purpose experimental PDU’s requires operating outside of the standard.

HLA Yes: Early in HLA development, the static nature of DIS PDU’s was identified as a
significant problem. The real world is always changing, and a flexible object model
capable of modeling changing data without having to continuously change the
underlying standard was designed. The template approach used by HLA (separating
data from the simulation architecture) provides the necessary object model extensibility.
The Modular FOM feature developed by the HLA Evolved PDG will even provide
runtime object model extensibility.

TENA | Yes: The need for object model flexibility and extensibility was also apparent during the
design of TENA requirements. TENA provides a standard object model, but
mechanisms exist within the architecture to extend the object model with whatever new
classes or capabilities that are required.

CTIA Yes: Individual component developers or product integrators can extend some portions
of the CTIA Object. These features are defined using eXtensible Markup Language
(XML) and are parsed at runtime by CTIA Services and components.

ALSP | Yes: The content of the ALSP object model is at the discretion of the confederation
members. If there is a need to extend the object model, the members can simply agree
to adjust their interfaces accordingly.

This is a minor consideration in assessing architecture compatibility and is primarily an issue when
connecting to DIS federations (normally, the RPR FOM is used). Gateways are not required simply
because of the lack of extensible models in all applications (although gateways or some other
translation mechanism will be required to support communication between applications using different
object models). A RPR FOM - like object model (for DIS) should also be specified to ensure
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compatibility with the other standard object models. This wedge issue does not appear to introduce
irreconcilable differences between the different architectures.

2.3.8

Wedge # 8: Data Filtering Supported

DIS

No: DIS was designed to achieve interoperability among a limited number of
simulations where scalability is not a paramount issue. Thus, using a broadcast
protocol was perfectly acceptable, and filtering was simply not required. Modern day
DIS users sometimes use subnets to achieve some basic level of filtering, although this
is not part of the architecture.

HLA

Yes: Being a general-purpose protocol, very large training and experimentation
environments were considered part of HLA's user base. For such applications,
scalability is critically important, and thus the architecture needed to possess
sophisticated filtering mechanisms. The Declaration Management services provide
basic publish-subscribe capabilities, while the Data Distribution Management services
allow arbitrary filtering regions to be established for any object attribute or interaction.

TENA

Yes: Scalability issues also drove TENA developers to implement publish-subscribe
capabilities for object state information. Currently, such services are satisfying user
needs, and thus there hasn't been a requirement to implement additional capabilities
(e.g., region-based filtering such as DDM) in the architecture. A DDM-like capability has
been expressed as a TENA requirement and this capability is planned as a very near-
term enhancement.

CTIA

Yes: The architecture supports “perfect” event and object filtering, at a cost. The cost of
choosing perfect filtering is in terms of performance of the (logically) central services.
Component developers have the option of utilizing perfect filtering or performing client-
side filtering.

ALSP

Yes: Filtering for ALSP confederations occurs at both the local level (ALSP Common
Module) and global level (ALSP Broadcast Emulator). All filtering is based on publish-
subscribe, similar to HLA's Declaration Management services. This provides all the
filtering currently needed to support ALSP exercises.

Different

2.3.9

requirements for data distribution management (DDM), publish - subscribe filtering (DM),
and broadcast approaches can be resolved using gateways. This wedge issue does not appear to
introduce irreconcilable differences between the different architectures.

Wedge #9: Reliable Transport Types

DIS

No: DIS was designed for real-time applications only. For real-time applications, the
latency penalty for reliable transport is generally considered too high a price to pay, as
occasional dropped packets in real-time human-in-the-loop environments are not
considered much of a problem. Thus, the User Datagram Protocol (UDP, as compared
to the reliability provided by Transmission Control Protocol or TCP) was all that was
required.

HLA

Yes: For many of the constructive users of HLA, repeatability requirements require the
use of reliable transport mechanisms. In addition, some federation management and
ownership management services require reliable transport. However, since HLA also
supports users with low latency requirements, transport can be defined as either best
effort or reliable on an individual object attribute and interaction basis.

TENA

Yes: TENA can provide both best effort and reliable transport.

CTIA

Yes: Nearly all CTIA transport mechanism use some form of reliable transport. Most
forms rely on TCP to provide reliability. Non-TCP reliable communications are also
specified for point-to-point as well as multicast distribution of data.

ALSP

Yes: Reliable transport is all that is used in ALSP exercises. Lost data packets would
have a strongly negative effect on the validity of ALSP exercises.

22



This difference does not seem easily reconcilable. Gateways can be used to ensure reliable delivery
as necessary, but can only ensure reliability after that message is received at the gateway. If
messages are “lost” before arriving at the gateway, the gateway cannot resolve the problem. The
problem can be resolved to a large degree (probably perfect resolution is possible) by interposing a
“‘message-reliability” gateway between each message-generating application and the simulation
network (using “middleware”, as opposed to the conventional use of gateways between different
architectures). This strategy would allow designating messages as reliable transport type before
those messages ever appear on the transport network. However, the strategy would likely require
many more gateways (“middleware” copies) to be used than the conventional gateway-use strategy
and could thus impose performance costs on the simulation exercise as a whole. However, it is not
impossible to resolve the differences here and this wedge issue does not appear to introduce
irreconcilable differences between the different architectures.

2.3.10 Wedge #10: Support Transfer of Ownership

DIS No: In DIS, the simulation that created the entity owns all entity-state information.
The need to transfer this ownership was never a part of the DIS user requirements.
HLA Yes: Some HLA users have expressed the requirement to dynamically transfer

attribute ownership during execution. For example, low-fidelity mission-level models
may want to transfer ownership of some missile attributes to a higher-fidelity missile fly
out model to provide a more accurate representation of endgame. Although these
services are not heavily used (compared to most others), HLA can support applications
that require such services.

TENA | No: In TENA, Stateful Distributed Objects (SDOs) are instantiated by participating
applications, who become the owners of that SDO. That application has the exclusive
right to publish updates of the values of the SDO's attributes. Transferring this right to
another application dynamically has not been necessary for the user community that
TENA currently supports. However, the ability to transfer ownership of objects is a
planned TENA enhancement.

CTIA Yes: Because CTIA is a client-server architecture, all objects are owned by the central
services. This allows virtually any component to change the state of any object in the
exercise. However, the architecture allows for components to specify the owner of
some objects (particularly for exercise participants) and restrict/transfer ownership of
some of the state parameters for participants.

ALSP | Yes: Reasons for attribute ownership transfer are essentially the same as for HLA. In
ALSP confederations, temporarily transferring ownership allows for higher fidelity
representations to be injected at critical points in the execution.

This difference seems readily reconcilable. Each architecture allows dynamic creation and
destruction of entities, a process that could (inelegantly, but effectively) substitute for full ownership
transfer. However, the difference should not impact interoperability between those architectures that
offer support and those that do not; no gateways are required based on this difference. This wedge
issue does not appear to introduce irreconcilable differences between the different architectures.

2.3.11 Wedge #11: Data Marshalling Support

DIS No: Data marshalling is not addressed in the DIS specification.

HLA No (currently): Data marshalling is not addressed in the HLA specification. Some
commercial RTI vendors provide utilities that offer support, but this is not a requirement.
Note that encoding helpers will be included as part of the next revision of the IEEE
1516.1 standard, which will provide some support for data marshalling.

TENA | Yes: The TENA middleware provides for marshalling and de-marshalling of data as
required.

CTIA Yes: CTIA relies in the Common Data Representation (CDR) to specify marshalling for
all objects. The CTIA Frameworks provide utilities for marshalling objects, as do all

23



commercial CORBA implementations.

ALSP | Yes: The ALSP confederation ran on many different types of computers/operating
systems. To avoid marshalling problems, all data was passed as American Standard
Code for Information Interchange (ASCII) text.

There are advantages and disadvantages to both approaches. Translation between text and binary
or different endian representations can be handled very efficiently at the gateway level, and can be
used to achieve interoperability between the architectures. This could also be viewed as one case
where business model issues have driven some architectural differences (between HLA and TENA as
an example). In HLA, vendors who supply this capability with their products should enjoy a
competitive advantage, so there is no need to specify this (and other types of utilities and support
tools) in the architecture. This wedge issue does not appear to introduce irreconcilable differences
between the different architectures.

2.3.12 Wedge #12: Requirements for Tools / Utilities

DIS No: The DIS standard focused on clearly necessary services to support data exchange
in a consistent, effective manner, and left the identification and development of
supporting tools to commercial tool vendors.

HLA No: The only software application that is specifically called out in the HLA specifications
is the RTI. The HLA program philosophy is that a supporting set of tools is very
important, but the tools are closely tied to the process model, which is outside of the
core architecture.

TENA | Yes: TENA defines a "product line" of supporting tools and utilities to assist users
creating and managing logical ranges and for working with the TENA common
infrastructure. Since using TENA would be very difficult without these tools and utilities,
the product line was made a core component to the overall architecture.

CTIA Yes: CTIA defines a "product line" of supporting tools and utilities to assist users
creating and managing exercises and ranges. This product line is the Live Training
Transformation (LT2) Family of Training Systems (LT2 FTS).

ALSP | No: Certain tools, such as the ALSP Control Terminal (ACT) and the Confederation
Management Tool (CMT) are required for ALSP confederations to operate properly.

This is not an issue that impacts interoperability (run-time). This could also be viewed as one case
where business model issues have driven architectural considerations. As an example, in HLA,
vendors who supply additional capability (e.g., supporting tools and utilities) with their products should
enjoy a competitive advantage, so there is no need to specify them along with the architecture. This
wedge issue does not appear to introduce irreconcilable differences between the different
architectures.

2.3.13 “Wedge” Issue Summary

The different “wedge” issues reflect significant design and implementation choices that have been
made within each of the architectures and protocols. However, as described above, none of them
introduce irreconcilable incompatibilities that would prevent the integration of the different
architectures into a mixed architecture event, although achieving such integration is not without cost
(including time, dollars, and capability). Two of the wedge issues, dealing with global event ordering
and reliable message transport types, are not easily reconciled and the solution proposed above
could have accompanying performance degradations. Some experimentation is required to establish
the technical implications and associated costs.
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2.4 Projected Future Requirements

The survey instrument, use case analyses, and workshop discussions have been used to posit an
estimate of likely future requirements. This list of future requirements has not been the product of a
formal requirements generation process, which introduces some limitations. However, while the list
presented here cannot be viewed as exhaustive, it is useful to assess the potential of each of the
existing architectures and protocols to meet future needs. For each projected future requirement, a
table below provides the requirement definition, the importance of the area addressed by the
requirement, and a synopsis of the problems that could arise if the requirement remains unsatisfied.

241 Improved Quality of Service (QoS)

Defined Quality of Service can provide different priority to different users or data flows, or
guarantee a certain level of performance (delivery reliability and timeliness) to a
data flow in accordance with requests from the application program

Importance Repeatability can’t be achieved without reliability of messaging

Problems Dropped packets, Delay, Jitter, Out-of-order delivery, Corrupted / misdirected
packets and receiver discovery; Reliability leads to potential latency and network
loading

It will probably be a future requirement for all architectures to provide reliable transport and other
advanced QoS mechanisms when required by user applications. CTIA appears to have the most
robust capability in this area, as that architecture is charged with providing reliable service even when
faced with unreliable networks.

242 Fault Tolerance

Defined A characteristic of a system allowing it to continue to operate, possibly at a
reduced level, rather than failing completely, when some part of the system fails.

Importance A large and costly simulation event fails when someone in the router room trips
over awall plug ...

Problems Faults can’t be exhaustively pre-defined. Major fault categories include simulation
system failure or network resource failure.

While much of the fault-tolerance behaviors and capabilities must reside in the applications (the
simulation systems themselves), there are some architectural capabilities that could help provide
improved fault tolerance. These include providing for application redundancy, automatic resign,
polling, providing more robust fault detection and resolution mechanisms, monitoring and notification
capabilities. These strategies should be architecture-independent and transferable across
architectures.

24.3 Information Assurance

Defined A product or technology that provides important security services (e.g.
identification, authentication, confidentiality, integrity, availability, anti-spoofing, ...)
as an associated feature of its intended operating purpose.

Importance Imagine the world without any level of information assurance ... (banking, national
security, commerce, ...).
Problems DoD information technology (IT) system information assurance requirements

apply but are not always addressed by simulation systems (DoD Instruction
8500.2 requirements for qualification as a “net-centric” system).

Much of the information assurance requirement is being met today, however inelegantly. Better
solutions, more tailored to the exact requirement seem possible for the future. However, there are
processes that allow the current architectures and protocols to meet the associated requirements.
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244 Interface to GIG

Defined The Global Information Grid (GIG) is the globally interconnected, end-to-end set
of information capabilities, processes, and personnel for collecting, processing,
storing, disseminating, and managing information on demand. The GIG includes
all owned and leased communications and computing systems and services,
software, system data, security services, and other associated services.

Importance Interfacing simulations with GIG resources allows real-time data and information
to flow into (e.g., timely initialization data) and out of (e.g., Course of Action
Analysis (COAA)) the simulations.

Problems Latency, validity of information, security (all the information assurance issues),
asset availability, discovery metadata, ... the role of M&S ...

To some degree, existing architectures can use gateways to interface with arbitrary networks now
(potentially including GIG resources). The role for M&S (and the GIG for that matter) is as yet
imprecise, so major immediate advances seem premature. However, as currently understood, the
requirement seems achievable.

245 Load Balancing

Defined Balancing a workload among multiple resources (host computer, networks,
gateways, ...)

Importance Repeatability or could inject faults into the system (fault tolerance improved if can
avoid resource saturation).

Problems Latency, system failures ...

Allowing asset redundancy will probably be required to redistribute loads to equivalent resources
(network, host, gateway, ...). Providing monitors to detect situations requiring dynamic load
balancing will also be necessary. These requirements do not appear to be incompatible with existing
architectures.

24.6 Projected Future Requirements Analysis Summary

The estimated future requirements appear to be supportable with enhancements to the existing
architectures. There does not seem to be any requirement that necessitates a complete redesign of
the architectures or a new start to build a replacement (more capable) architecture.

2.5 Current State Analysis Summary

The current state includes a wide range of user communities, and different architectures and
protocols are used across those communities. No single architecture is dominant and, with the
exception of ALSP, the user base of all architectures appears to be increasing (although at different
rates). The above review of stated requirements, wedge issues, and likely future requirements shows
that the existing architectures have much in common and, more importantly, do not have
irreconcilable differences.

There are other important aspects of the current state. Many of the problems that are barriers to
interoperability have been described above in the sections stating the problem and discussing the
tradeoffs between having a single, universal architecture and multiple, more purpose-specific
architectures. Finally, community perceptions about the current state are described in a following
section (Assertions). (While these community perceptions presented in the Assertions section
clearly describe characteristics of the current state, they are also important in helping to define the
best way forward. Thus, the Assertions discussion in this report is placed immediately preceding the
Initial Strategy Assessment section.)
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In short summary, the current state where multiple architectures and protocols exist and are used
simultaneously has both advantages and disadvantages. Chief among the disadvantages is that the
integration effort to conduct mixed-architecture events (and attendant costs) is very high. Integration
can be achieved, but the process could be greatly improved.

3 Defining the Desired End State

The problem definition and requirements analyses allow a succinct vision statement describing the
desired end state that should be achieved by applying the strategy outlined in the LVC architectural
roadmap. Future actions should ultimately provide the simulation communities with a single (either
conceptually or physically) architecture that provides established levels of service in each DoD
context of use and will allow valid interactions between user systems. The several implied
requirements in this statement require some further development.

3.1 Conceptually or Physically Single Architecture

As argued above, striving to achieve a single physical architecture implementation that can be
universally applied is not necessarily the correct outcome for this effort. = However, if multiple
architecture implementations are to exist in the future, it is desirable to reach a state where the
existing architectures are so easily integrated that they can be viewed as a single “architecture of
architectures”, conceptually a single resource. Thus, the desired end state is agnostic on the number
of different architectures or protocols that exist, but does express a requirement that they are, at a
minimum, conceptually a single architecture.

3.2 Established Levels of Service

The goal state should, at a minimum, provide all the necessary services that are currently available.
There should be no degradation of performance or capability as compared to the current capability.

3.3 Each DoD Context of Use

The goal state must serve as a universal resource. No existing community of users should be
abandoned, regardless of their number.

3.4 Allow Valid Interactions

Any system, simulation or otherwise, that uses the architecture’s service should be assured that their
interactions will be valid at the syntactic level. This includes, in the case of a conceptually single
architecture, interactions between systems that utilize physically different architectures.

4 Candidate Strategies

The strategy for transitioning from the "as is" state of simulation interoperability for LVC environments
to the desired end state described in Section 3 involves many complex technical, business, and
cultural factors. While the selection of the optimal near- and long-term strategy for LVC
interoperability will require a thorough analysis of these factors, it is important to first identify the set of
potential strategies that could serve as the basis for roadmap development. The strategies)
described below represent a LVCAR-participant consensus of the possible high-level approaches to
addressing LVC interoperability issues from which a roadmap of lower-level actions and activities can
be derived. In addition to the strategies themselves, a short discussion of the primary advantages
and disadvantages of each (from the architectural perspective) is provided.
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4.1 Strategy 1: Maintain the Status Quo

In this strategy, no specific actions are taken to unify the current distributed simulation architectures.
This can be thought of as the "natural selection" or “distributed, uncoordinated management”
strategy, which recognizes that the various architectures will evolve as needed to meet the future
needs of each user base, and that when mixed architecture environments are required, the current
(but admittedly ad hoc, inefficient, and decentralized) approach of using gateways and bridges will
eventually become good enough to meet future needs. Architectures that do not continue to meet
user needs in a cost-appropriate manner will eventually die off with no direct intervention necessary.

Primary advantages:

= There is no disruption to existing architecture users.

= No additional investment needed beyond that which the individual architecture sponsor already
provides.

Primary disadvantages:

= Known technical/schedule/cost risks for mixed architecture applications will continue indefinitely.
= Possible duplication of effort during normal evolution of the architectures.
= Further divergence among the architectures is likely.

= Additional architectures may be created that would compete with those now available.

4.2 Strategy 2: Enhance Interoperability of Mixed-Architecture
Events

In this Strategy, the focus is to create solutions to improve the interoperation of existing architectures
in a mixed-architecture environment. Examples of such solutions include establishing standard
agreements (e.g., processes, terminology, object models) that cut across the various architectures
and improving the performance, reliability and (re) usability of future gateways and bridges. The
individual architectures would evolve to support their native user communities, but oversight would be
provided to discourage divergence and duplication of effort. Unlike the approaches that focus on
creating an end state that includes only a single architecture, this Strategy assumes that there is
benefit in having multiple architectures available for use, that the benefit is worth the dollar cost in
maintaining different architectures, and that the interoperability problems caused by the need to mix
the different architectures can be resolved.

Primary advantages:
= User community requirements continue to be met based on the normal evolution of the
architectures.
= Allows users to choose from a diverse set of architectural capabilities.
= Does not impose a "one size fits all" solution.
= Actively improves interoperability while providing no disruption to existing architecture users.

= Multiple architectures will spur competition between providers and likely lead to more rapid
innovation.

= Benefits can be achieved incrementally.
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= Oversight Board provides a mechanism to arrest the continued development of new
architectures.

Primary disadvantages:

= Cross-architecture integration will still be required for mixed-architecture events.

= Funding will be necessary to maintain potentially overlapping capabilities.

4.3 Strategy 3: Encourage and Facilitate Architecture
Convergence

This Strategy is very similar to the preceding strategy, with the exception that policy actions and
investment incentives would be added to cause the architectures to converge either into a single
architecture or into a set of compatible and interoperable architectures. Thus, while the same
roadmap actions would be taken with regard to improving both model and runtime interoperability in
the near-mid term, this strategy would include additional actions as necessary to achieve some
appropriate level of architecture convergence (including the potential for physical convergence) at a
specified future date.

Primary advantages:
= Multiple architectures will compete to be the “convergence target”, fostering competition
between providers and likely leading to more rapid innovation.
= Needed architectural changes are phased-in to avoid user community disruptions.
= Benefits can be achieved incrementally.

= Eliminates much of the complexity of mixed architecture environments in the long-term if
physical convergence can be achieved.

Primary disadvantages:

= Possible disruption to users, in that the final actions to achieve convergence may be
unacceptable to existing architecture users.

= Requires that hard choices be made regarding several technical and business model issues,
which may provide disincentives for affected users to transition.

= Uncertainty about the degree of convergence that can be achieved results in a potential for
failure and poor ROI

4.4 Strategy 4: Select One of the Existing Architectures

In this strategy, an evaluation of how well existing individual architectures would satisfy all identified
requirements (including projected future requirements) would be conducted, and the architecture that
represents the "closest fit" to future needs will be chosen as the foundation of a single future
architecture for LVC. Actions at that point will focus on adding (hopefully reusing from other
architectures) features and capabilities needed by users that do not currently employ the chosen
architecture, and institute policy and financial incentives to convince affected users to transition.

Primary advantages:
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= The end state is a single architecture, which eliminates the risk and additional resource
consumption inherent to mixed architecture environments.

= Reuse of existing architecture capabilities reduces cost relative to a new start.

Primary disadvantages:

= Significant disruption to users of non-select architectures.

= Eliminates the ability for users to consider and choose among multiple architectures for the
one that best suits their needs (i.e., "one size fits all" problem).

= Despite policy and other incentives, users may decide to keep using their existing
architecture if they feel it is more appropriate for their needs (i.e., this strategy has a relatively
high risk of failure).

4.5 Strategy 5: Develop a New Architecture

In this strategy, an entirely new architecture would be developed based on current and future
requirements f